The role of hypoxia in the integrity of the genetic apparatus and the formation of memory in drosophila in the paradigm of conditioned reflex suppression of courtship

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

M.E. Lobashev and V.В. Savvateev in 1959 obtained unique data on the expansion of the adaptive capabilities of the organism when training the properties of higher nervous activity by the formation of conditioned food reflexes to stimuli that exhaust the nervous system. Apparently, the formation of a conditioned connection help to overcoming stressful effects, adaptation to restrictive conditions, and changes in the functioning of the nervous system. To test this assumption, the influence of stressful influences hypoxia on learning and memory of Drosophila in the paradigm of conditioned reflex suppression of courtship was studied. The results were obtained on the enhancement of the ability to learn under hypoxic exposure. These experimental conditions did not affect memory formation. The effect of hypoxia on chromosomes through the formation of double-stranded breaks was revealed. The data are discussed in light of the relationship between neuroplasticity processes and mechanisms of adaptation to stressors.

Full Text

Restricted Access

About the authors

Anna V. Medvedeva

Pavlov Institute of Physiology RAS

Author for correspondence.
Email: avmed56@mail.ru
Scopus Author ID: 16689705800

PhD, Senior Researcher of Laboratory of Neurogenetics

Russian Federation, Saint Petersburg

Elena V. Tokmacheva

Pavlov Institute of Physiology RAS

Email: tokmatcheva@mail.ru

PhD, Researcher of Laboratory of Neurogenetics

Russian Federation, Saint Petersburg

Ekaterina A. Nikitina

Pavlov Institute of Physiology RAS; Herzen State Pedagogical University

Email: 21074@mail.ru
ORCID iD: 0000-0003-1897-8392
SPIN-code: 7844-8621
Scopus Author ID: 56603106300

DrSc, Head of Department of Human and Animal Anatomy and Physiology; Leader Researcher of Laboratory of Neurogenetics

Russian Federation, Saint Petersburg

Svetlana Alexandrovna Vasilieva

Herzen State Pedagogical University

Email: swetlana.gorohowa@yandex.ru
ORCID iD: 0000-0002-7785-7091

Assistent of Department of Human and Animal Anatomy and Physiology

Russian Federation, Saint Petersburg

Ekaterina S. Zalomaeva

Pavlov Institute of Physiology RAS; Herzen State Pedagogical University

Email: Zalomaeva.E@yandex.ru
ORCID iD: 0000-0002-6005-3433
SPIN-code: 2075-1823

Assistent of Department of Human and Animal Anatomy and Physiology; Post-graduate student of Laboratory of Neurogenetics

Russian Federation, Saint Petersburg

Elena V. Savvateeva-Popova

Pavlov Institute of Physiology RAS

Email: esavvateeva@mail.ru
SPIN-code: 2559-4778
Scopus Author ID: 6603078303

DrSc, Head of Laboratory of Neurogenetics

Russian Federation, Saint Petersburg

References

  1. Лобашев М.Е., Савватеев В.Б. Физиология суточного ритма животных. – М.; Л.: Наука, 1959. [Lobashev ME, Savvateev VB. Fiziologiya sutochnogo ritma zhivotnykh. Moscow, Leningrad: Nauka; 1959. (In Russ.)]
  2. Каминская А.Н., Никитина Е.А., Паялина Т.Л. и др. Влияние соотношения изоформ LIMK1 на поведение ухаживания Drosophila melanogaster: комплексный подход // Экологическая генетика. – 2011. – Т. 9. – № 4. – С. 3–14. [Kaminskaya AN, Nikitina EA, Payalina TL, et al. Effect of the LIM Kinase 1 isoform ratio on Drosophila melanogaster courtship behavior: A complex approach. Russian Journal of Genetics: Applied Research. 2012;2(5):367–377]. https://doi.org/10.1134/S2079059712050024.
  3. Лобашев М.Е. Сигнальная наследственность // Исследования по генетике. – 1961. – Т. 1. – С. 3–11. [Lobashev ME. Signalnaya nasledstvennost. Issledovaniya po genetike. 1961;1:3–11. (In Russ.)]
  4. Siegel RW, Hall JC. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA. 1979;76(1):283–289. https://doi.org/10.1073/pnas.76.7.3430.
  5. Ejima A, Smith BPC, Lucas C, et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol. 2007;17(7):599–605. https://doi.org/10.1016/j.cub.2007.01.053.
  6. Журавлев А.В., Никитина Е.А., Савватеева-Попова Е.В. Обучение и память у дрозофилы: физиолого-генетические основы // Успехи физиологических наук. – 2015. – Т. 46. – № 1. – С. 76–92. [Zhuravlev AV, Nikitina EA, Savvateeva-Popova EV. Education and memory in drosophila: physiological and genetic bases. Progress in physiological science. 2015;46(1):76–92. (In Russ.)]
  7. Kamyshev NG, Iliadi KG, Bragina JV. Drosophila conditioned courtship: Two ways of testing memory. Learn Mem Cold Spring Harb. 1999;6(1):1–20.
  8. Griffith LC, Ejima A. Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learn Mem. 2009;16(12):743–750. https://doi.org/10.1101/lm.956309.
  9. Зарубина И.В. Современные представления о патогенезе гипоксии и ее фармакологической коррекции // Обзоры по клинической фармакологии и лекарственной терапии. – 2011. – Т. 8. – № 3. – С. 31–48. [Zarubina IV. Modern view on pathogenesis of hypoxia and its pharmacological correction. Reviews on clinical pharmacology and drug therapy. 2011;8(3):31–48. (In Russ.)]
  10. Ветровой О.В., Рыбникова Е.А., Самойлов М.О. Церебральные механизмы гипоксического/ишемического посткондиционирования // Биохимия. – 2017. – Т. 82. – № 3. – С. 542–551. [Vetrovoy OV, Rybnikova EA, Samoylov MO. Tserebralnye mekhanismy gipoksicheskogo/ishemicheskogo postkonditsionirovaniya. Biochemistry. 2017;82(3):542–551. (In Russ.)]
  11. Лобашев М.Е. Генетика. – Л.: Изд-во ЛГУ, 1967. [Lobashev ME. Genetika. Leningrad: Isd-vo LGU; 1967. (In Russ.)]
  12. Suberbielle E, Sanchez P, Kravitz A. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-b. Nature Neurosci. 2013;16:613–621. https://doi.org/10.1038/nn.3356.
  13. Piotrowicz Z, Chalimoniuk M, Płoszczyca K, et al. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One. 2019;14(10):e0224207. https://doi.org/10.1371/journal.pone.0224207.
  14. Mitroshina ЕV, Mishchenko TA, Shirokova OM, et al. Intracellular neuroprotective mechanisms in neuron-glial networks mediated by glial cell line-derived neurotrophic factor. Oxid Med Cell Longev. 2019;1036907. https://doi.org/10.1155/2019/1036907.
  15. Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(Pt B):80–89. https://doi.org/10.1016/j.nbd.2016.01.021.
  16. Irala D, Bonafina A, Fontanet PA, et al. The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM. Development. 2016;143(22):4224–4235. https://doi.org/10.1242/dev.140350.
  17. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1. https://doi.org/10.3389/neuro.02.001.2010.
  18. Kesslak JP, So V, Choi J, et al. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: A mechanism to facilitate encoding and circuit maintenance? Behav Neurosci. 1998;112(9):1012–1019. https://doi.org/ 10.1037//0735-7044.112.4.1012.
  19. Mizuno M, Yamada K, Olariu A, et al. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci. 2000;20:7116–7121. https://doi.org/10.1523/JNEUROSCI.20-18-07116.2000.
  20. Ma YL, Wang HL, Wu HC, et al. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience. 1998;82:957–967. https://doi.org/10.1016/S0306-4522(97)00325-4.
  21. Nikitina EA, Medvedeva AV, Dolgaya YuF, et al. Involvement of GDNF and LIMK1 and heat shock proteins in Drosophila learning and memory formation. Journal of Evolutionary Biochemistry and Physiology. 2012;48(5–6):529–539. https://doi.org/10.1134/S0022093012050076.
  22. Merelli A, Rodríguez JCG, Folch J, et al. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol. 2018;16(10):1484–1498. https://doi.org/0.2174/1570159X 16666180110130253.
  23. Licht T, Goshen I, Avital A, et al. Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci USA. 2011;108(12):5081–5086. https://doi.org/10.1073/pnas.1007 640108.
  24. Hamidi G, Arabpour Z, Shabrang M, et al. Erythropoietin improves spatial learning and memory in streptozotocin model of dementia. Pathophysiology. 2013;20(2):153–158. https://doi.org/10.1016/j.pathophys.2013.01.001.
  25. Kraggerud SM, Sandvik JA, Pettersen EO. Regulation of protein synthesis in human cells exposed to extreme hypoxia. Anticancer Res. 1995;15(3):683–686.
  26. Masuda K, Abdelmohsen K, Gorospe M. RNA-binding proteins implicated in the hypoxic response. J Cell Mol Med. 2009;13(9a):2759–2769. https://doi.org/10.1111/j.1582-4934.2009.00842.x.
  27. Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 2001;128:2815–2822.
  28. Sudhakaranand IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol. 2017;14(5):568–586. https://doi.org/ 10.1080/15476286.2016.1244588.
  29. Gorospe M, Tominaga K, Wu X, et al. Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs. Front Mol Neurosci. 2011;4:7. https://doi.org/10.3389/fnmol.2011.00007.
  30. Mircea I, Huang X. miR-210: Fine-tuning the hypoxic response. Adv Exp Med Biol. 2014;772:205–227. https://doi.org/10.1007/978-1-4614-5915-6_10.
  31. Godlewski J, Lenart J, Salinska E. MicroRNA in brain pathology: Neurodegeneration the other side of the brain cancer. Non coding RNA. 2019;5(1):20. https://doi.org/10.3390/ncrna5010020.
  32. Liu L-L, Li D, He Y-L, et al. miR-210 protects renal cell against hypoxia-induced apoptosis by targeting HIF-1 alpha. Mol Med. 2017;23:258–271. https://doi.org/10.2119/molmed.2017.00013.
  33. Watts ME, Williams SM, Nithianantharajah J, Claudianos C. Hypoxia-induced microRNA-210 targets neurodegenerative pathways. Non coding RNA. 2018;4(2):10. https://doi.org/10.3390/ncrna4020010.
  34. Савватеева-Попова Е.В., Никитина Е.А., Медведева А.В. От нейрогенетики к нейроэпигенетике // Генетика. – 2015. – Т. 51. – № 5. – С. 613–624. https://doi.org/10.7868/ S0016675815050070. [Savvateeva-Popova EV, Medvedeva AV, Nikitina EA. Neurogenetics and neuroepigenetics. Russian Journal of Genetics. 2015;51(5):518–528]. https://doi.org/10.1134/S1022795415050075.
  35. Steward O, Fass B. Polyribosomes associated with dendritic spines in the denervated dentate gyrus: Evidence for local regulation of protein synthesis during reinnervation. Prog Brain Res. 1983;58:131–136. https://doi.org/10.1016/S0079-6123(08)60013-8.
  36. Каминская А.Н., Никитина Е.А., Герасименко М.С. и др. Обучение и формирование памяти в сопоставлении с распределением pCREB и белковых агрегатов в нейромышечных контактах у Drosophila melanogaster при полиморфизме limk1 // Генетика. – 2015. – Т. 51. – № 6. – С. 685–693. [Kaminskaya AN, Nikitina EA, Gerasimenko MS, et al. The influence of the limk1 gene polymorphism on learning acquisition and memory formation, pcreb distribution and aggregate formation in neuromuscular junctions in Drosophila melanogaster. Russian Journal of Genetics. 2015;51(6):685–693]. https://doi.org/10.7868/S0016675815060077.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of chromosome rearrangements after hypoxia exposure at different time intervals. CS — wild-type Drosophila line Canton-S. * statistically significant differences from control, p ≤ 0.05.

Download (101KB)
3. Fig. 2. Effects of hypoxia on sexual behavior elements of untrained Drosophila males. UWH — untrained without hypoxia; U1HH — untrained within 1 hour after hypoxia; U3HH — unearthed 3 hours after hypoxia. * statistically significant differences from control, p ≤ 0.05

Download (97KB)
4. Fig. 3. Effect of hypoxia training on sexual behavior components in Drosophila in the conditioned courtship suppression paradigm. U1HH — untrained within 1 hour after hypoxia; THC0 — males training in hypoxic conditions immediately after 30 min of training in the barocamera. * statistically significant differences from control, p ≤ 0.05

Download (72KB)
5. Fig. 4. Effect of hypoxia on Drosophila learning and memory in the conditioned courtship suppression paradigm. C0 — control males without hypoxia — test immediately after training (learning); THC0 — males training in hypoxic conditions immediately after 30 min of training in the barocamera; C3 — control males without hypoxia — 3 hours after training (memory); THC3 — males training in hypoxic conditions 3 hours after training. * statistically significant differences from control, p ≤ 0.05; • statistically significant differences from males tested immediately after training, p ≤ 0.05

Download (91KB)

Copyright (c) 2021 Medvedeva A.V., Tokmacheva E.V., Nikitina E.A., Vasilieva S.A., Zalomaeva E.S., Savvateeva-Popova E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies