ФЕРМЕНТЫ-МАРКЕРЫ АСТРОЦИТОВ



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Изучение структурно-функциональных особенностей астроглии как в норме, так и при развитии патологического процесса в нервной системе, является актуальной задачей современной нейробиологии. В настоящее время описан целый ряд белков, применяемых в практике научных и клинико-диагностических исследований в качестве маркеров астроцитов. Среди этих белков особое место занимают ферментные маркеры астроглии. В связи с этим целью настоящего обзора стало обобщение современных данных литературы о ферментах астроцитов, применяемых для их селективного иммуногистохимического маркирования. Приведенные в обзоре данные свидетельствуют, что, несмотря на широкое использование, ферменты-маркеры астроцитов не обладают абсолютной специфичностью и по отдельности не могут быть использованы для точной идентификации данной клеточной популяции.

Ключевые слова

Полный текст

Доступ закрыт

Об авторах

Е Г Сухорукова

Институт экспериментальной медицины

Email: iemmorphol@yandex.ru
к.м.н., старший научный сотрудник Лаборатории функциональной морфологии центральной и периферической нервной системы Отдела общей и частной морфологии ФГБНУ «ИЭМ». Санкт-Петербург, ул. Академика Павлова 197376 Санкт-Петербург, ул. Академика Павлова, д. 12

В В Гусельникова

Институт экспериментальной медицины

научный сотрудник Лаборатории функциональной морфологии центральной и периферической нервной системы Отдела общей и частной морфологии ФГБНУ «Институт экспериментальной медицины» 197376 Санкт-Петербург, ул. Академика Павлова, д. 12

Список литературы

  1. Zonta M., Carmignoto G. Calcium oscillations encoding neuron-to-astrocyte communication // J. Physiol.- 2002.- Vol. 96, № 3-4.- P. 193-198.
  2. Fellin T., Sul J. Y., D'Ascenzo M., Takano H., Pascual O., Haydon P. G. Bidirectional astrocyte-neuron communication: the many roles of glutamate and ATP // Novartis. Found. Symp.- 2006.- Vol. 276.- P. 208-217.
  3. Wang D. D., Bordey A. The astrocyte odyssey // Prog. Neurobiol.- 2008.- Vol. 86, № 4.- P. 342-367.
  4. Sofroniew M. V., Vinters H. V. Astrocytes: biology and pathology // Acta Neuropathol.- 2010.- Vol. 119, № 1.- P. 7-35.
  5. Molofsky A. V., Krencik R., Ullian E. M., Tsai H. H., Deneen B., Richardson W. D., Barres B. A., Rowitch D. H. Astrocytes and disease: a neurodevelopmental perspective // Genes Dev.- 2012.- Vol. 26, № 9.- P. 891-907.
  6. Steinler D. A., Laywell E. D. Astrocytes as stem cells: nomenclature, phenotype, and translation // Glia.- 2003.- Vol. 43, № 1.- P. 62-69.
  7. Kriegstein A., Alvarez-Buyll A. The glia nature of embyionic and adult neural stem cells // Ann. Rev. Neurosci.- 2009.- Vol. 32.- P. 149-184.
  8. Коржевский Д. Э. Нейрогенез и нейральные стволовые клетки // Медицинский академический журнал.- 2010.- Т. 10, № 4.- С. 175-182.
  9. Коржевский Д. Э., Отеллин В. Л., Григорьев И. П. Глиальный фибриллярный кислый белок в астроцитах неокортекса человека. // Морфология.- 2004.- Т. 126, № 5.- С. 7-10.
  10. Коржевский Д. Э., Кирик О. В., Сухорукова Е. Г. и др. Изучение пространственной организации астроцитов головного мозга при помощи конфокальной лазерной микроскопии // Морфология.- 2009.- Т. 135, № 3.- С. 76-79.
  11. Сухорукова Е. Г., Ллексеева О. С., Коржевский Д. Э. Глиальный фибриллярный кислый белок - компонент промежуточных филаментов астроцитов мозга позвоночных // Журн. эвол. биохимии и физиол.- 2015.- Т. 51, № 1.- С. 3-10.
  12. Hertz L., Zielke H. R. Astrocytic control of glutamatergic activity: astrocytes as stars of the show // Trends Neurosci.- 2004.- Vol. 27.- P. 735-743.
  13. Bacci A., Verderio C., Pravettoni E., Matteoli M. The role of glial cells in synaptic function // Philos Trans R Soc Lond B Biol Sci.- 1999.- Vol. 354.- P. 403-409.
  14. Sonnewald U., Qu H., Aschner M. Pharmacology and toxicology of astrocyte-neuron glutamate transport and cycling // J. Pharmacol. Exp. Ther.- 2002.- Vol. 301.- P. 1-6.
  15. Norenberg M. D., Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain // Brain Res.- 1979.- Vol. 161.- P. 303-310.
  16. Schousboe A., Svenneby G., Hertz L. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres // J. Neurochem.- 1977.- Vol. 29.- P. 999-1005.
  17. Cammer W. Glutamine synthetase in the central nervous system is not confined to astrocytes // J. Neuroimmunol.- 1990.- Vol. 26.- P. 173-178.
  18. D'Amelio F., Eng L. F., Gibbs M. A. Glutamine synthetase immunoreactivity is present in ologodendroglia of various regions of the central nervous system // Glia.- 1990.- Vol. 3.- P. 335-341.
  19. Anlauf E., Derouiche A. Glutamine Synthetase as an Astrocytic Marker: Its Cell Type and Vesicle Localization // Front Endocrinol.- 2013.- Vol. 4.- P. 1-5.
  20. Bernstein H.-G., Bannier J., Meyer-Lotz G., Steiner J., Keilhoff G., Dobrowolny H., Walter M., Bogerts B. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization // Journal of Chemical Neuroanatomy.- 2014.- Vol. 61-62.- P. 33-50.
  21. Derouiche A, Frotscher M. Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation // Brain Res.- 1991.- Vol. 552.- P. 346-350.
  22. Suârez I, Bodega G, Fernandez B. Glutamine synthetase in brain: effect of ammonia // Neurochem. Int.- 2002.- Vol. 41.- P. 123-142.
  23. Haberle J., Gorg B., Toutain A., Rutsch F., Benoist J.-F., Gelot A., Suc A. L., Koch H. G., Schliess F., Haussinger D. Inborn error of amino acid synthesis: human glutamine synthetase deficiency // J. Inherit. Metab. Dis.- 2006.- Vol. 29.- P. 352-358.
  24. He Y., Hakvoort T. B. M., Vermeulen J. L. M., Lamers W. H., Van Roon M. A. Glutamine synthetase is essential in early mouse embryogenesis // Dev. Dyn.- 2007.- Vol. 236.- P. 1865-1875.
  25. Haberle J. Clinical practice: the management of hyperammonemia // Eur. J. Pediatr.- 2011.- Vol. 170.- P. 21-34.
  26. Rose C. F. Ammonia-lowering strategies for the treatment of hepatic encephalopathy // Clin. Pharmacol Ther.- 2012.- Vol. 92.- P. 321-331.
  27. Eid T., Thomas M. J., Spencer D. D., Runden-Pran E., Lai J. C. K., Malthankar G. V., Kim J. H., Danbolt N. C., Ottersen O. P., de Lanerolle N. C. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy // Lancet.- 2004.- Vol. 363.- P. 28-37.
  28. Van der Hel W. S., Notenboom R. G. E., Bos I. W. M., van Rijen P. C., van Veelen, C. W. M., Graan P. N. E. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy // Neurology.- 2005.- Vol. 64.- P. 326-333.
  29. Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., Floyd R. A., Markesbery W. R. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease // Proc. Natl. Acad. Sci. U.S.A.- 1991.- Vol. 88.- P. 10540-10543.
  30. Hensley K., Hall N., Subramaniam R., Cole P., Harris M., Aksenov M., Aksenova M., Gabbita S. P., Wu J. F., Carney J. M. et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation // J. Neurochem.- 1995.- Vol. 65.- P. 2146-2156.
  31. Steffek A. E., McCullumsmith R. E., Haroutunian V., Meador-Woodruff J. H. Cortical expression of glial fibrillary acidic protein and glutamine synthetase is decreased in schizophrenia // Schizophr. Res.- 2008.- Vol. 103.- P. 71-82.
  32. Yu X., He G.-R., Sun L., Lan X., Shi L.-L., Xuan Z.-H., Du G.-H. Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism // Life Sci.- 2012.- Vol. 91.- P. 5-13.
  33. Robinson S. R. Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease // J. Neurosci. Res.- 2001.- Vol. 66.- P. 972-980.
  34. Chretien F., Vallat-Decouvelaere A.-V., Bossuet C., Rimaniol A.-C., Le Grand R., Le Pavec G., Creminon C., Dormont D., Gray F., Gras G. Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques // Neuropathol. Appl. Neurobiol.- 2002.- Vol. 28.- P. 410-417.
  35. Porterfield S. P., Hendrich C. E. The role of thyroid hormones in prenatal and neonatal neurological development-current perspectives // Endocr Rev.- 1993.- Vol. 14.- P. 94-106.
  36. Bianco A. C., Salvatore D., Gereben B., Berry M. J., Larsen P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases // Endocr Rev.- 2002.- Vol. 2.- P. 38-89.
  37. Crantz F. R., Silva J. E., Larsen P. R. An analysis of the sources and quantity of 3,5,3-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum // Endocrinology.- 1982.- Vol. 110.- P. 367-375.
  38. Guadaûo-Ferraz A., Obregôn M. J., St Germain D. L., Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain // Proc Natl Acad Sci USA.- 1997.- Vol. 94.- P. 10391-10396.
  39. Cahoy J. D., Emery B., Kaushal A., Foo L. C., Zamanian J. L., Christopherson K. S., Xing Y., Lubischer J. L., Krieg P. A., Krupenko S. A., Thompson W. J., Barres B. A. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function // J. Neurosci.- 2008.- Vol. 28.- P. 264-278.
  40. Dratman M. B., Crutchfield F. L. Synaptosomal [125I]triiodothyronine after intravenous [125I]thyroxine // Am. J. Physiol.- 1978.- Vol. 235.- E638-647.
  41. Courtin F., Chantoux F., Pierre M., Francon J. Induction of type II 5’-deiodinase activity by cyclic adenosine 3’, 5’-monophosphate in cultured rat astroglial cells // Endocrinology.- 1988.- Vol. 123.- P. 1577-15781.
  42. Carlson D. J., Strait K. A., Schwartz H. L., Oppenheimer J. H. Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain // Endocrinology.- 1994.- Vol. 135.- P. 1831-1836.
  43. Calvo R., Obregôn M. J., Ruiz de Oûa C., Escobar del Rey F., Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3’-triiodothyronine in the protection of the fetal brain // J. Clin. Invest.- 1990.- Vol. 86.- P. 889-899.
  44. Silva J. E., Matthews P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism // J. Clin. Invest.- 1984.- Vol. 74.- P. 1035-1049.
  45. Obregôn M. J., Ruiz de Oûa C., Calvo R., Escobar del Rey F., Morreale de Escobar G. Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate // Endocrinology.- 1991.- Vol. 129.- P. 2663-2673.
  46. Kaplan M. M., Yaskoski K. A. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus // J. Clin. Invest.- 1981.- Vol. 67.- P. 1208-1214.
  47. Zou L., Burmeister L.A., Styren S. D., Kochanek P. M., DeKosky S. T. Up-regulation of type 2 iodothyronine deiodinase mRNA in reactive astrocytes following traumatic brain injury in the rat // J. of neurochemistry.- 1998.- Vol. 71.- P. 887-890.
  48. Margaill I., Royer J., Lerouet D., Ramaugé M., Le Goascogne C., Li W.W., Plotkine M., Pierre M., Courtin F. Induction of type 2 iodothyronine deiodinase in astrocytes after transient focal cerebral ischemia in the rat // J. Cereb Blood Flow Metab.- 2005.- Vol. 25.- P. 468-476.
  49. Van Doorn J., Roelfsema F., van der Heide D. Contribution fron local conversion of thyroxine to 3,5,3’-triiodothyronine to intracellular 3,5,3’-tri-iodothyronine in several organs in hypothyroid rats at isotope equilibrium // Acta Endocrinol (Copenh).- 1982.- Vol. 101.- P. 386-396.
  50. Galton V. A., Wood E. T., St Germain E. A., Withrow C. A., Aldrich G., St Germain G. M., Clark A. S., St Germain D. L. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development // Endocrinology.- 2007.- Vol. 148.- P. 3080-3088.
  51. Doetsch F. The glial identity of neural stem cells // Nature neuroscience.- 2003.- Vol. 6.- P. 1127-1134.
  52. Garcia A. D., Doan N. B., Imura T., Bush T. G., Sofroniew M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain // Nature neuroscience.- 2004.- Vol. 7.- P. 1233-1241.
  53. Foo L. C., Dougherty J. D. Aldh1L1 is expressed by postnatal neural stem cells in vivo // Glia.- 2013.- Vol. 6.- P. 1533-1541.
  54. Krupenko S. A. FDH: An aldehyde dehydrogenase fusion enzyme in folate metabolism // Chem. Biol. Interact.- 2009.- Vol. 178.- P. 84-93.
  55. Yang Y., Vidensky S., Jin L., Jie C., Lorenzini I., Frankl M., Rothstein J. D. Molecular comparison of GLT1 + and ALDH1L1+ astrocytes in vivo in astroglial reporter mice // Glia.- 2011.- Vol. 59.- P. 200-207.
  56. Neymeyer V., Tephly T. R., Miller M. W. Folate and 10-formyltetrahydrofolate dehydrogenase (FDH) expression in the central nervous system of the mature rat // Brain Res.- 1997.- Vol. 766.- P. 195-204.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Сухорукова Е.Г., Гусельникова В.В., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах