ВЗАИМОДЕЙСТВИЕ НЕРВНОЙ И ИММУННОЙ СИСТЕМ В НОРМЕ И ПАТОЛОГИИ



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В статье рассмотрены исторические аспекты становления иммунофизиологии как науки, а также приведен обзор современных исследований взаимодействия нервной и иммунной систем в норме и при патологии. Приводятся новейшие данные, описывающие реакции ЦНС на антигенные стимулы различной природы, а также возможность вовлечения в эти реакции нейронов разной эргичности, в частности орексин-содержащих нейронов гипоталамуса. Кроме того, в статье рассматривается одна из возможных гипотез о пути передачи информации об антигене от иммунной системы к нервной.

Полный текст

Доступ закрыт

Об авторах

Елена Андреевна Корнева

Санкт-Петербургский государственный университет

Email: korneva_helen@mail.ru
Академик РАМН

С В Перекрест

Научно-исследовательский институт экспериментальной медицины СЗО РАМН

Список литературы

  1. Броун Г. Р., Могутов С. С., Кан Г. С. Роль некоторых структур гипоталамуса в регуляции иммунобиологических процессов при иммунизации организма вакциной БЦЖ. // Бюл. эксперим. биол. и мед.- 1970.- Т. 70, № 7.- С. 74-78.
  2. Клименко В. М., Корнева Е. А. Нейрональная активность гипоталамуса и гомеостатические реакции // Мат. конф. Общества физиологов и патофизиологов ГДР. Халле.- 1974.- С. 17-18.
  3. Besedovsky H. O., Sorkin E., Felix D., Haas H. Hypothalamic changes during the immune response // Eur. J. immunol.- 1977.- Vol. 7.-P. 323-325.
  4. Корнева Е. А., Клименко В. М., Шхинек Э. К. Нейрогормональное обеспечение иммунного гомеостаза.- Л.: Наука, 1978.- 248 с.
  5. Григорьев В. А. Влияние экспериментальной модуляции функционального состояния гипоталамуса на развитие иммунного ответа // Физиол. журн. им. И. М. Сеченова.- 1981.- Т. 67, № 3.- С. 463-467.
  6. Rivest S., Torres G., Rivier C. Differential-effects of central and peripheral injection of interleukin-1-beta on brain c-fos expression and neuroendocrine function // Brain res.- 1992.- Vol. 587, № 1.- P. 13-23.
  7. Chang S. L., Ren T., Zadina J. E. Interleukin-1 activation of FOS proto-oncogene protein in the rat hypothalamus // Brain Res.- 1993.-Vol. 617.- P. 123-130.
  8. Ericsson A., Kovacs K. J., Sawchenko P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons // J Neurosci.- 1994.- Vol. 14.- P. 897-913.
  9. Bulloch K. Neuroanatomy of lymphoid tissue: a review // Neural modulation of immunity.- N. Y., 1985.- P. 111-140.
  10. Vizi E. S, Orso E., Osipenko O. N. et al. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes // Neurosci.- 1995.- Vol. 68.- P. 1263-1276.
  11. Felten S. Y., Olschowka J. J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synaptic-like contacts on lymphocytes in the splenic white pulp // Neurosci. Res.- 1987.- Vol. 18.- P. 37-48.
  12. Denes A., Boldogkoi Z., Uhereczky G. Central automatic control of the bone marrow: multisynaptic tract trasing by recombinant pseudorabies virus // Neurosci.- 2005.- Vol. 134, № 3.- P. 947-963.
  13. Goehler L. E. Gaykema R. P. H., Maier S. E., Watkins L. R. Vagal afferents innervate deep cervical and iliac lymph nodes in the rat // Soc. neurosci. abstr.- 2000.- Vol. 26.- P. 1184.
  14. Cake M. N., Litwak G. The glucocorticoid receptops // Biochemical actions of hormones. / Ed.G. Litwak.- N. Y.: Acad. Press, 1975.-Vol. 3.- P. 317-390.
  15. Werb Z., Foley R., Munck A. Interaction of glucocorticoids with macrophages. Identification of glucocorticoid receptors in monocytes and macrophages // J. Ехр. Med.- 1978.- Vol. 147.- P. 1684-1694.
  16. Helderman J. H., Strom T., Strannegard O. J. Specific insulin binding site on T and B lymphocytes as a marker of cell activation // Nature.-1978.- Vol. 274.- P. 62-63.
  17. Russel D. N., Matrision L., Kibler R. Prolactin receptor on human lymphocytes and their modulation by cyclosporine // Biochem. biophys. res. commun.- 1984.- Vol. 121.- P. 899-906.
  18. Richman D. P., Arnason B. G. Nicotinic acetylcholine receptor:evidence for a functionally distinct receptor of human lymphocytes // Proc. Natl. Acad. Sci. USA.- 1979.- Vol. 76.- P. 4632-4635.
  19. Hasum E., Chang K. J., Cuatrecasas P. Specific nonopiat receptors for beta endorphins. // Nature.- 1979.- Vol. 205.- P. 1033-1035.
  20. Stanisz A., Scicchitano R., Payan D., Bienenstock J. In vitro studies of immunoregulation by substance P and somatostatin // Ann. NY Acad. Sci.- 1987.- Vol. 496.- P. 217-255.
  21. Корнева Е. А., Хай Л. М. Влияние разрушения участков гипоталамической области на процесс иммуногенеза. // Физиол. журн.-1963.- Т.49, № 1.- С. 42-48.
  22. Лесников В. А., Аджиева С. Б., Исаева Е. Н. Гипоталамическая модуляция гемопоэтической функции костного мозга // Сб. I Всесоюз. Иммунол. Съезда. Тез. Т. 1.- М., 1989.- С. 331.
  23. Munck A., Guyre P. M. Glucocorticoids and immune function // Psychoneuroimmunology / еds. R. Ader, D. Felten, N. Cohen.- N. Y.: Acad. press inc.- 1991.- P. 447-513.
  24. Bateman A., Singh A., Kral T., Solomon S. The immunehypothalamic-pituitary-adrenal axis // Endocr Rev.- 1989.- Vol. 10.- P. 92-111.
  25. Snow E. С. Insulin and growth hormone function as minor growth factors that-potentiate lymphocyte activation // J. immunol.- 1985.- Vol. 135.- P.776s-778s.
  26. Berczi I., Nagy E. Effects of hypophysectomy on immune function // Psychoneuroimmunology. Ed. 2 / еds. Ader, D. Felten, N. Cohen.-N. Y.: Acad. press inc. 1991.- P. 339-375.
  27. Bulloch K., Cullen M. R., Schuartz R. H., Longo D. L. Development of innervation within syngenic thymus tissue transplanted under the kidney capsule of the nude mause: a light and ultrastructural microscope study // J. Neurosci. Res.- 1987.- Vol. 8, № 1.- P. 16-27.
  28. Ballou L. R., Laulederkind S. J. F., Rosloniec E. F., Raghow R. Ceramide signaling and the immune response // Biochim. Biophys. Acta.-1996.- Vol. 1301.- P. 273-287.
  29. Felten D. L., Felten S. Y., Belinger D. L. Noradrenergic sympathetic neural interactions with the immune system: structure and function // Immunol. Rev.- 1987.- Vol. 100.- P. 225-260.
  30. Jankovic B. D., Spector N. H. Effect on the immune system of lesioning and stimulation of the nervous system: neuroimmunomodulation // Enkephalins and endorphins: Stress and immune system / еd. N. P. Plotnikoff et al.- N. Y.; London, 1986.- P. 189-220.
  31. Долин А. О., Крылов В. Н. Экспериментальное изучение роли коры головного мозга в иммунном ответе тела. // Журн. высшей нервной деятельности.- 1952.- Т. 11, № 4.- С. 547-560.
  32. Danzer R., Bluthe R.-M., Laye S. et al. Cytokines and Sickness Behavior // Annals of New York Acad. Sci.- 1998.- Vol. 840.-P. 586-590.
  33. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates sphingomyelin signal transduction pathway in a cell-free system // Science.- 1992.- Vol. 255.- P. 1715-1718.
  34. Dorshkind K., Horseman N. D. Anterior pituitary hormones, hormones, stress, and immune system homeostasis // Bioassays.- 2001.-Vol. 23, № 3.- P. 288-294.
  35. Elmquist J. K., Ackermann M. R., Register K. B. et al. Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration // Endocrinology.- 1993.- Vol. 133.- P. 3054-3057.
  36. Gaykema R. P. A., Goehler L. E., Armstrong C. B. et al. Differential FOS expression rat brain induced by lipopolisaccharide and staphylococcal enterotoxin B // Neuroimmunomodulation.-1999.- Vol. 6.- P. 220.
  37. Zhang Y.-H., Lu J., Elmquist J. K. et al. Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord // J. of Neurosci.- 2000.- Vol. 20, № 17.- P. 6578-6586.
  38. Goehler L. E. Gaykema P. R. A., Hansen K. Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats // Am. J. Physiol. Regulatory Integrative Comр. Physiol.- 2001.- Vol. 280.- P. R1434-R439.
  39. Корнева Е. А., Казакова Т. Б., Носов М. А. Экспрессия c-fos мРНК и c-Fos-подобных белков в клетках гипоталамических структур при введении антигена. // Аллергология и иммунология.- 2001.- № 1.- C. 37-44.
  40. Перекрест С. В., Гаврилов Ю. В., Абрамова Т. В. и др. Активация клеток гипоталамических структур при введении антигенов различной природы (по экспрессии c-fos гена) // Медицинская иммунология.- 2006.- Т. 8, № 5-6.- С. 631 636.
  41. Гаврилов Ю. В., Перекрест С. В., Новикова Н. С. Экспрессия c-Fos белка в клетках различных структур гипоталамуса при электроболевом раздражении и введении антигенов // Физиологический журнал им. И. М. Сеченова.- 2006.- Т. 92, № 10.- С. 1195-1203.
  42. Zhang S., Blache D., Vercoe P. E. Expression of orexin receptors in the brain and peripheral tissues of the male sheep // Regul. Pept.- 2005.-Vol. 124.- P. 81-87.
  43. Cano G., Sved A. F., Rinaman L. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. // J. of comр. neurol.- 2001.- Vol. 439.- P. 1-18.
  44. Bluthe R. M., Walter P., Parnet C. R. et al. Lipopolysaccharide induces sickness behavior in rats by a vagal mediated mechanism // Acad. Sci. III.- 1994.- Vol. 317.- P. 499-503.
  45. Watkins L. R., Goehler L. E., Relton J. K. et al. Blockade of interleukin-1-induced fever by subdiaphragmatic vagotomy; evidence for vagal mediation of immune brain communication // Neurosci. lett.- 1995.- Vol. 183.- P. 27-31.
  46. Watkins L. R., Wiertelak E. P., Goehler L. E. Neurocircuitry of illness-induced hyperalgesia // Brain Res.- 1994.- Vol. 639.- P. 283-299.
  47. Laye S., Bluthe R. M., Kent S. et al. Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS // Am. J. Physiol.- 1995.- Vol. 268.- P. R1327-R1331.
  48. Hansen M. K., Nguyen K. Т., Fleshner M. et al. Effects of vagotomy on serum endotoxin, cytokines, and corticosterone after intraperitoneal lipopolysaccharide // Am. J. Physiol Regulatory Integrative Comp Physiol.- 2000.- Vol. 278, № 2.- P. R331-R336.
  49. Van Dam A. M., Bol J. G., Gaykema R. P. A. et al. Vagotomy does not inhibit high dose lipopolysaccharide-induced interleukin-1beta immunore-activity in rat brain and pituitary gland // Neurosci. Lett.- 2000.- Vol. 285, № 3.- P. 169-172.
  50. Azab A. N., Kaplanski J. Vagotomy attenuates the effect of lipopolysaccharide on body temperature of rats in a dose-dependent manner // Innate Immunity.- 2001.- Vol. 7, № 5.- P. 359-364.
  51. Hermann G. E., Emch G. S., Tovar C. A., Rogers R. С. C-Fos generation in the dorsal vagal complex after systematic endotoxin is not dependent on the vagus nerve // Am. J. Physiol. Regulatory Integrative Comр. Physiol.- 2001.- Vol. 280.- P. R289-R299.
  52. Wieczorek M., Swiergiel A. H., Pournajafi-Nazarloo H., Dunn A. J. Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice // Physiol. Behav.- 2005.- Vol. 85, № 4.- P. 500-511.
  53. Konsman J. P., Luheshi G. N., Bluthe R. M., Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis // Eur. J. Neurosci.- 2000.- Vol. 12, № 12.- P. 4434-4446.
  54. Goehler L. E., Gaykema P. R. A., Hammach S. E. et al. Interleukin-1 induces c-Fos immunoreactivity inprimary afferent neurons of the vagus nerve // Soc. neurosci. abstr.- 1998.- Vol. 804.- P. 306-310.
  55. Gaykema R. P. A., Goehler L. E., Bol F. J. H. et al. Bacterial endotoxin induces Fos immunoreactivity in primary afferent neurons of the vagus nerve // Neuroimmunomodulation 1998.- Vol. 5.- P. 234-240.
  56. Goehler L. E., Erisir A., Gaykema R. P. A. Neural-immune interface in the rat area postrema // Neuroscience.- 2006.- Vol. 140, № 4.-P. 1415-1434.
  57. Ek M., Kurosawa M., Lundeberg T., Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1b: role of endogenous prostaglandins // J. Neurosci.- 1998.- Vol. 18.- P. 9471-9479.
  58. Lu X. Y., Yang G. Z., Sun H. С. The activation of vagus afferent in response to lipopolysaccharide the role of interleukin-1 // Sheng Li Xue Bao.- 2002.- Vol. 54, № 2.- P.111-114.
  59. Hosoi T., Okuma Y., Matsuda T., Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion // Auton. Neurosci.- 2005.- Vol. 120, № 1-2.- P. 104-107.
  60. Elmquist J. K., Saper C. B. Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide // J. of cоmр. neurol.- 1996.- Vol. 374, № 3.- P. 315-331.
  61. Elmquist J. K., Scammell T. E., Jacobson C. D., Saper C. B. Distrubution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration // J. of ComP. Neurol.- 1996.- Vol. 371, № 1.- P. 85-103.
  62. Day H. E., Akil H. Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action // Neuroendocrinology.- 1996.- Vol. 63, № 3.- P. 207-218.
  63. Sagar S. M., Price K. J., Kasting N. W., Sharp F. R. Anatomic patterns of Fos immunostaining in rat-brain following systemic endotoxin administration // Brain res. bul.-1995.- Vol. 36, № 4.- P. 381-392.
  64. Gaykema R. P., Balachandran M. K., Godbout J. P. et al. Enhanced neuronal activation in central autonomic network nuclei in aged mice following acute peripheral immune challenge // Auton Neurosci.- 2007.- Vol. 131, № 1-2.- P. 137-142.
  65. Ge X., Yang Z., Duan L., Rao Z. Evidence for involvement of the neural pathway containing the peripheral vagus nerve, medullary visceral zone and central amygdaloid nucleus in neuroimmunomodulation // Brain Res.- 2001.- Vol. 914, № 1-2.- P. 149-158.
  66. Gaykema R. P. A., Goehler L. E. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue? // Brain Behav Immun.- 2011.- Vol. 25, № 3.- P. 443-460.
  67. Marvel F. A., Chen C. С., Badr N. et al. Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei // Brain Behav. Immun.- 2004.- Vol. 18, № 2.- P. 123-134.
  68. Gaykema R. P. A., Goehler L. E., Lyte M. Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry // Brain Behav. Immun.- 2004.- Vol. 18, № 3.- P. 238-245.
  69. Pavlov V. A., Wang H., Czura C. J. et al. The Cholinergic Anti-inflammatory Pathway: A Missing Link in Neuroimmunomodulation // Molecular Med.- 2003.- Vol. 9, № 5-8.- P. 125-134.
  70. Gallowitsch-Puerta M., Pavlov V. A. Neuro-immune interactions via the cholinergic anti-inflammatory pathway // Life Sci.- 2007.- Vol. 80, № 24-25.- P. 2325-2329.
  71. Goehler L. E., Gaykema R. P. A., Opitz N. et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni // Brain Behav. Immun.- 2005.- Vol. 19, № 4.- P. 334-344.
  72. Goehler L. E., Park S.-M., Opitz N. et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior // Brain Behav. Immun.- 2008.- Vol. 22, № 3.- P. 354-366.
  73. Tkacs N. С., Strack A. M. Systemic endotoxin induces fos-like immunoreactivity in rat spinal sympathetic regions // J. of the autonomic nervous system.- 1995.- Vol. 51, № 1.- P. 1-7.
  74. Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system // Pharmacol. Rev.- 2000.- Vol. 52, № 4.- P. 595-638.
  75. Gaykema R. P. A., Park S. M., McKibbin C. R., Goehler L. E. Lipopolysaccharide suppresses activation of the tuberomammillary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways // Neuroscience.- 2008.- Vol. 152, № 1.- P. 273-287.
  76. Park S.-M., Gaykema R. P. A., Goehler L. E. How does immune challenge inhibit ingestion of palatable food? Evidence that systemic lipopolysaccharide treatment modulates key nodal points of feeding neurocircuitry // Brain Behav. Immun.- 2008.- Vol. 22, № 8.- P.1160-1172.
  77. Vizi E. S., Elenkov I. J. Nonsynaptic noradrenaline release in neuro-immune responses // Acta Biol Hung.- 2002.- Vol. 53, № 1-2.-P. 229-244.
  78. Mori K., Kaneko Y. S., Nakashima A. et al. Effect of peripheral lipopolysaccharide injection on dopamine content in murine anterior olfactory nucleus // J. Neural. Transm.- 2003.- Vol. 110, № 1.- P. 31-50.
  79. Hollis J. H., Lightman S. L., Lowry C. A. Lipopolysaccharide has selective actions on sub-populations of catecholaminergic neurons involved in activation of the hypothalamic-pituitary-adrenal axis and inhibition of prolactin secretion // J. of Endocrinology.- 2005.- Vol. 184.-P. 393-406.
  80. Kaneko Y. S., Mori K., Nakashima A. et al. Peripheral injection of lipopolysaccharide enhances expression of inflammatory cytokines in murine locus coeruleus: possible role of increased norepinephrine turnover // J. Neurochem.- 2005.- Vol. 94, № 2.- P. 393-404.
  81. Gaykema R. P. A., Goehler L. E. Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: Their potential role in sickness behavior // Brain, Behavior, and Immunity.- 2009.- Vol. 23.- P. 926-930.
  82. Ota A., Mori K., Kaneko Y. S. et al. Peripheral lipopolysaccharide administration affects the olfactory dopamine system in mice // Ann. N. Y. Acad. Sci.- 2008.- Vol. 1148.- P. 127-135.
  83. Chiba S., Itateyama E., Oka K. et al. Hypothalamic Neuronal Histamine Modulates Febrile Response but Not Anorexia Induced by Lipopolysaccharide // Exp. Biol. Med.- 2005.- Vol. 230, № 5.- P. 334-342.
  84. Baharnoori M., Bhardwaj S. K., Srivastava L. K. Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders // Schizophrenia Bulletin.- 2010.- Aug 30. [Epub ahead of print].
  85. Zhu Ch.-B., Lindler K. M., Owens A. W. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters // Neuropsychopharmacology.- 2010.- Vol. 35.- P. 2510-2520.
  86. Lin Y.-L., Lin S.-Y., Wang S. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats // Brain, Behavior, and Immunity.- 2012.- Vol. 26, № 3.- P. 459-468.
  87. Kim Y. W., Kim K. H., Ahn D. K. et al. Time-course changes of hormones and cytokines by lipopolysaccharide and its relation with anorexia // J. Physiol. Sci.- 2007.- Vol. 57, № 3.- P. 159-165.
  88. Painsipp E., Herzog H., Holzer P. Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice // Neuropharmacology.- 2008.- Vol. 55, № 1.- P. 117-126.
  89. Edelsbrunner M. E., Herzog H., Holzer P. Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner // Behaviour Brain Research.- 2009.- Vol. 203, № 1.-P. 97-107.
  90. Sakurai T., Amemiya A., Ishii M. et al. Orexins and orexin receptors: a family of hypothalamic neuroprptides and G protein-coupled receptors that regulate feeding behavior // Cell.- 1998.- Vol. 92.- P. 573-585.
  91. Date Y., Ueta Y., Yamashita H. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems // Proc. Nat. Acad. Sci. USA.- 1999.- Vol. 96.- P. 748-753.
  92. Vzn den Pol A. N., Gao X. B., Obrietan K. et al. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin // J. Neurosci.- 1998.- Vol. 18.- P. 7962-7971.
  93. Vzn den Pol A. N. Narcolepsy: a neurodegenerative disease of the hypocretin system? // Neuron.- 2000.- Vol. 27.- P. 415-418.
  94. Beuckmann C., Yanagisawa M. Orexins: from neuropeptides to energy homeostasis and sleep/wake regulation. // J. Mol. Med.- 2002.-Vol. 80, № 6.- P. 329-342.
  95. Vzn den Top M., Nolan M. F., Lee K. et al. Orexin induce increased excitability and synchronization of rat sympathetic preganglionic neurons // J. Physiol.- 2003.- Vol. 549, Pt. 3.- P. 809-821.
  96. Trivedi P., Yu H., MacNeilD.J. et al. Distribution of orexin receptor mRNA in the rat brain // FEBS Letters.- 1998.- Vol. 438.- P. 71-75.
  97. Chen J., Randeva H. S. Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants // Mol. Endocrinol.- 2004.- Vol. 18, № 11.- P. 2790-2804.
  98. Randeva H. S., Karteris E., Grammatopoulos D., Hillhouse E. W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis // J. Clin. Endocrinol. Metabolism.- 2001.- Vol. 86, № 10 -P. 4808-4813.
  99. Steidl U., Bork S., Schaub S. et al. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators // Blood.- 2004.- Vol. 104.- P. 81-88.
  100. De Lecea L., Kilduff T. S., Peyron C. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity // Proc Natl Acad Sci USA.- 1998.- Vol. 95.- P. 322-327.
  101. Sakurai S., Nishijima T., Takahashi S. et al. Low plasma orexin A levels were improved by continuous positive airway pressure treatment in patients with severe obstructive sleep apnea-hypopnea syndrome // Chest.- 2005.- Vol. 127.- P. 731-737.
  102. Peyron C., Tighe D. K., van den Pol A. N. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems // J. Neuroscience.- 1998.- Vol. 18, № 23.- P. 9996-10015.
  103. Shainidze K. Z., Novikova N. S. Immunoreactivity of Hypothalamic Orexin-Containing Neurons in Rats in Movement Restriction and Cooling // Neurosci. Behav. Physiol.- 2011.- Vol. 41, Iss. 2.- P. 213-221.
  104. Thakkar M. M., Winston S., McCarley R. W. Orexin-A containing lateral hypothalamic neurons project both in the cholinergic basal forebrain and subcoereleus pontine reticular formation: a retrograde tracing study // Sleep.- 2001.- Vol. A141.- P. 24.
  105. Chen C. Т., DunS. L., Kwok E. H. et al. Orexin A-like immunoreactivity in the rat brain // Neurosci. Lett.- 1999.- Vol. 260.- P. 161-164.
  106. Nambu T., Sakurai T., Mizukami K. et al. Distribution of orexin neurons in the adult rat brain // Brain Res.- 1999.- Vol. 827.- P. 243-260.
  107. Van den PolA. N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord // J. Neurosci.- 1999.- Vol. 19, № 8.- P. 3171-3182.
  108. Date Y., Mondal M. S., Matsukura S. et al. Distribution of orexin/hypocretin in the rat median eminence and pituitary // Brain. Res. Mol. Brain. Res.- 2000.- Vol. 76.- P. 1-6.
  109. Larsen P. J., Hay-Schmidt A., Mikkelsen J. D. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat // J. Comp. Neurol.-1994.- Vol. 342.- P. 299-319.
  110. Haj-Dahmane S., Shen R.-Y. The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling // J. Neurosci.- 2005.- Vol. 25, № 4.- P. 896-905.
  111. Kummer M., Neidert S. J., Johren O., Dominiak P. Orexin (hypocretin) gene expression in rat ependymal cells // Neuroreport.- 2001.-Vol. 12.- P. 2117-2120.
  112. Kirchgessner A. L., Liu M.-L. Orexin synthesis and response in the gut // Neuron.- 1999.- Vol. 21, № 4.- P. 941-951.
  113. Naslund E., Ehrstrom M., Ma J. et al. Localization and effects of orexin on fasting motility in the rat duodenum // Am. J. Physiol. Gastrointest Liver Physiol.- 2002.- Vol. 282.- P. G470-G479.
  114. Becskei C., Riediger H., Hernadfalvy D. A. et al. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake.// Brain. Behav. Immun. 2008.- Vol. 22, № 1.- P. 56-64.
  115. Perekrest S. V., Abramova T. V., Novikova N. S. et al. Changes in immunoreactivity of Orexin-A-Positive Neurons after an Intravenous Lipopolysaccharide injection // Medical Science Monitoring.- 2008.- Vol. 14, № 7.- Р. BR127-133.
  116. Perekrest S. V., Abramova T. V., Novikova N. S. Comparative analysis of the responses of orexin-containing neurons to administration of different doses of lipopolysaccharide // Neurosci. and Behav. Physiol.- 2011.- Vol. 41, Iss. 2.- P. 206-212.
  117. PerekrestS. V., Shainidze K.Z., Loskutov Yu. V. et al. Immunoreactivity of orexin-containing neurons in the hypothalamus and the level of expression of the preproorexin gene in these cells after administration of lipopolysaccharide // Neurosci. and Behav. Physiol.- 2013.- Vol. 43, Iss. 2.- P. 256-260.
  118. Ma X. С., Oliver J., Horvath E., Phelps C. P. Cytokine and adrenal axis responses to endotoxin // Brain Res.- 2000.- Vol. 861.-P. 135-142.
  119. Gaykema R. P. A., Daniels T. E., Shapiro N. J. et al. Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling // Brain Res.- 2009.- Vol. 19, № 1294.- P. 61-79.
  120. Wan W., Wetmore L., Sorenson C. M. Neural and biochemical mediators of toxin and stress-induced c-fos expression in the rat brain // Brain Res. Bull.- 1994.- Vol. 34.- P. 7-14.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Корнева Е.А., Перекрест С.В., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах