Prospects of pharmacological regulation of aquaporin function in CNS diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review analyzes the results of scientific research on the role of aquaporins in the pathogenesis of CNS diseases and the possibility of their pharmacological regulation.

Aquaporins (AQP) are proteins involved in the transmembrane transport of water and other substances. They form the water channels of cell membranes and are widely represented in various mammalian cells, including the membranes of human brain and spinal cord cells. To date, about 300 types of proteins of the aquaporin family have been discovered, of which 13 (AQP0–AQP12) have been identified in human cells. Localization of different types of AQP in CNS structures, their functional activity and involvement in the development of CNS diseases differ. There are mainly three types of AQPs in the central nervous system: AQP1, AQP4 and AQP9. The results of scientific research indicate the most important role of AQP in maintaining water-salt homeostasis and ensuring physiological processes in the central nervous system, and also confirm the role of AQP in the pathogenesis of a number of diseases of the central nervous system (cerebral edema of various genesis, invasion of tumor cells and the formation of peritumorous edema, in the development of autoimmune diseases — opticomyelitis, Alzheimer’s disease). Pharmacological regulation of the functional activity of aquaporins can influence the course of these diseases. Therefore, there is a natural interest in drugs that can change the expression of AQP.

Proteins of the aquaporin family provide transmembrane transport of water and play an essential role in the development of pathological conditions of the central nervous system. They can be potential targets for pharmacological effects in a number of diseases of the central nervous system. The search and study of drugs affecting the expression and functional activity of AQP is pathogenetically justified and is a promising direction in the development of pharmacotherapy strategies for cerebral edema, malignant brain tumors and other CNS diseases.

Full Text

Restricted Access

About the authors

Natalia S. Ponamareva

Smolensk State Medical University

Author for correspondence.
Email: Ponamareva-n@yandex.ru
ORCID iD: 0000-0001-8996-1753
SPIN-code: 4403-1981

Cand. Sci. Med. (Pharmacology), assistant professor, assistant professor of the Department of Pharmacology

Russian Federation, Smolensk

Vasiliy E. Novikov

Smolensk State Medical University

Email: nau@sgmu.info
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028

Dr. Sci. (Med.), Professor, head of the Department of Pharmacology

Russian Federation, Smolensk

Elena V. Pozhilova

Smolensk State Medical University

Email: elena-pozh2008@yandex.ru
ORCID iD: 0000-0002-7372-7329
SPIN-code: 6371-6930

assistant of the Department of Orthopedic Dentistry with a course of orthodontics

Russian Federation, Smolensk

References

  1. Levchenkova OS, Novikov VE, Pozhilova EV. Mitochondrial pore as a pharmacological target. Vestnik of the Smolensk State Medical Academy. 2014;13(4):24–33. (In Russ.)
  2. Novikov VE, Levchenkova OS. Perspectives of Use of Inducers of the Hypoxia Adaptation Factor in Therapy of Ischemic Diseases. Journal of the Ural Medical Academic Science. 2014;51(5):132–138. (In Russ.)
  3. Novikov VE, Levchenkova OS, Pozhilova EV. The role of the mitochondrial ATP-dependent potassium channel and its modulators in cell adaptation to hypoxia. Vestnik of the Smolensk State Medical Academy. 2014;13(2):48–54. (In Russ.)
  4. Pozhilova EV, Novikov VE. Physiological and pathological value of cellular synthase of nitrogen oxide and endogenous nitrogen oxide. Vestnik of the Smolensk State Medical Academy. 2015;14(4):35–41. (In Russ.)
  5. Finn RN, Cerdа J. Evolution and Functional Diversity of Aquaporins. Biology Bulletin. 2015;229(1):6–23. doi: 10.1086/BBLv229n1p6
  6. Xu M, Xiao M, Li S, et al. Aquaporins in Nervous System. Adv Exp Med Biol. 2017;969:81–103. doi: 10.1007/978-94-024-1057-0_5
  7. Bon EI, Maksimovich NE. Morphofunctional features of different types of channels of cytoplasmatic membrane. Vestnik of the Novgorod State University. 2020;(4(120)):5–12. (In Russ.) doi: 10.34680/2076-8052.2020.4(120).5-12
  8. Novikov VE, Ponamareva NS, Yasnetsov VV, Kulagin KN. Pharmacotherapy of brain edema: the current state of the problem. Vestnik of the Smolensk State Medical Academy. 2021;20(3):25–42. (In Russ.) doi: 10.37903/vsgma.2021.3.4
  9. Maugeri R, Schiera G, Di Liegro C, et al. Aquaporins and Brain Tumors. International J Molecular Sciences. 2016;17(7):1029. DOI: 10.3390 /ijms17071029
  10. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(14):265–277. doi: 10.1038/nrn3468
  11. Oshio K, Watanabe H, Song Y, et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005;19(1):76–78. doi: 10.1096/fj.04-1711fje
  12. Rauen K, Pop V, Trabold R, et al. Vasopressin V1a Receptors Regulate Cerebral Aquaporin 1 after Traumatic Brain Injury. J Neurotrauma. 2020;37(4):665–674. doi: 10.1089/neu.2019.6653
  13. Deckmann I, Santos-Terra J, Fontes-Dutra M, et al. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci. 2021;81(7):579–604. doi: 10.1002/jdn.10137
  14. Novikov VE. Possibilities of pharmacological neuroprotection in traumatic brain injury. Psychopharmacology and Biological Narcology. 2007;7(2):1500–1509. (In Russ.)
  15. Novikov VE, Kovaleva LA. The effect of substances with nootropic activity on oxidative phosphorylation in the mitochondria of the brain in acute traumatic brain injury. Russian Journal of Experimental and Clinical Pharmacology. 1997;60(1):59–61. (In Russ.)
  16. Novikov VE, Kovaleva LA. The effect of nootropics on the function of brain mitochondria in the dynamics of traumatic brain injury in the age aspect. Russian Journal of Experimental and Clinical Pharmacology. 1998;61(2):65–68. (In Russ.)
  17. Novikov VE, Maslova NN. The effect of mexidol on the course of posttraumatic epilepsy treatment. Russian Journal of Experimental and Clinical Pharmacology. 2003;66(4):9–11. (In Russ.)
  18. Novikov VE, Sharov AN. The effect of GABA-ergic agents on oxidative phosphorylation in the brain mitochondria in traumatic edema. Pharmacology and Toxicology. 1991;54(6):44–46. (In Russ.)
  19. Noell S, Fallier-Becker P, Mack AF, et al. Water channels aquaporin 4 and -1 expression in subependymoma depends on the localization of the tumors. PLOS One. 2015;10(6):e0131367. doi: 10.1371/journal.pone.0131367
  20. Hayashi Y, Edwards NA, Proescholdt MA, et al. Regulation and function of aquaporin-1 in glioma cells. Neoplasia. 2007;9(9): 777–787. doi: 10.1593/neo.07454
  21. El Hindy, Bankfalvi A, Herring A, et al. Correlation of aquaporin-1 water channel protein expression with tumor angiogenesis in human astrocytoma. Anticancer Res. 2013;33(2):609–613.
  22. Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta. 2015;1848(10 (Pt B)):2576–2583. doi: 10.1016/j.bbamem.2014.09.001
  23. Pozhilova EV, Novikov VE. Adaptation to hypoxia in tumour growth. Vestnik of the Smolensk state medical Academy. 2015;14(3):16–20. (In Russ.)
  24. Kim JH, Lee YW, Park KA, et al. Agmatine Attenuates Brain Edema through Reducing the Expression of Aquaporin-1 after Cerebral Ischemia. J Cereb Blood Flow Metab. 2010;30(5):943–949. doi: 10.1038/jcbfm.2009.260
  25. Hoshi A, Tsunoda A, Tada M, et al. Expression of Aquaporin 1 and Aquaporin 4 in the Temporal Neocortex of Patients with Parkinson’s Disease. Brain Pathol. 2017;27(2):160–168. doi: 10.1111/bpa.12369
  26. Lu DC, Zador Z, Yao J, et al. Aquaporin-4 Reduces Post-Traumatic Seizure Susceptibility by Promoting Astrocytic Glial Scar Formation in Mice. J Neurotrauma. 2021;38(8):1193–1201. doi: 10.1089/neu.2011.2114
  27. Smith AJ, Jin BJ, Ratelade J, et al. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. J Cell Biol. 2014;204(4):559–573. doi: 10.1083/jcb.201308118
  28. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–538. doi: 10.1177/0271678X15617172
  29. Warth A, Simon P, Capper D, et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res. 2007;85(6):1336–1346. doi: 10.1002/jnr.21224
  30. Wolburg H, Noell S, Fallier-Becker P, et al. The disturbed blood-brain barrier in human glioblastoma. Molecular Aspects of Medicine. 2012;32(5–6):579–589. doi: 10.1016/j.mam.2012.02.003
  31. Previch LE, Ma L, Wright JC. Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke. Int J Mol Sci. 2016;17(7):1146. doi: 10.3390/ijms17071146
  32. Chen JQ, Zhang CC, Jiang SN, et al. Effects of Aquaporin 4 Knockdown on Brain Edema of the Uninjured Side аfter Traumatic Brain Injury in Rats. Med Sci Monit. 2016;22:4809–4819. doi: 10.12659/msm.898190
  33. Farr GW, Hall CH, Farr SM, et al. Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience. 2019;404: 484–498. doi: 10.1016/j.neuroscience.2019.01.034
  34. Xiong A, Xiong R, Yu J, Liu Y, et al. Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. Burns Trauma. 2021;9: tkaa050. doi: 10.1093/burnst /tkaa050
  35. Rao KV, Reddy PV, Curtis KM, et al. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma. 2011;28(3):371–381. doi: 10.1089/neu.2010.1705
  36. Tang G, Liu Y, Zhang Z, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells. 2014;32(12): 3150–3162. doi: 10.1002/stem.1808
  37. Zeng XN, Xie LL, Liang R, et al. AQP4 knockout aggravates ischemia/reperfusion injury in mice. CNS Neurosci Ther. 2012;18(5): 388–394. doi: 10.1111/j.1755–5949.2012.00308.x
  38. Tang Y, Wu P, Su J, Xiang J, et al. Effects of aquaporin-4 on edema formation following intracerebral hemorrhage. Exp Neurol. 2010;223(2):485–495. doi: 10.1016/j.expneurol.2010.01.015
  39. Sadana P, Coughlin L, Burke J, et al. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J Neurol Sci. 2015;354:37–45. doi: 10.1016/j.jns.2015.04.042
  40. Kaur C, Sivakumar V, Zhang Y, et al. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia. 2006;54(8):826–839. doi: 10.1002/glia.20420
  41. Bhattacharya P, Pandey AK, Paul S, et al. Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. Life Sci. 2014;100(2): 97–109. doi: 10.1016/j.lfs.2014.01.085
  42. Blixt J, Gunnarson E, Wanecek M. Erythropoietin Attenuates the Brain Edema Response after Experimental Traumatic Brain Injury. J Neurotrauma. 2018;35(4):671–680. doi: 10.1089/neu.2017.5015
  43. Gunnarson E, Song Y, Kowalewski JM, et al. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc Natl Acad Sci USA. 2009;106(5):1602–1607. doi: 10.1073/pnas.0812708106
  44. Töllner K, Brandt C, Römermann K, et al. Тhe organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. Europ J Pharmacol. 2015;746:167–173. doi: 10.1016/j.ejphar.2014.11.019
  45. Huber VJ, Tsujita M, Yamazaki M, et al. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett. 2007;17(5):1270–1273. doi: 10.1016/j.bmcl.2006.12.010
  46. Huber VJ, Tsujita M, Kwee IL, et al. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem Lett. 2009;17(1):418–424. doi: 10.1016/j.bmc.2007.12.038
  47. Ding Z, Zhang J, Xu J, et al. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys. 2013;67(2):615–622. doi: 10.1007/s12013-013-9549-0
  48. Mazumder MK, Borah A. Piroxicam confer neuroprotection in Cerebral Ischemia by inhibiting cyclooxygenases, acid- sensing ion channel-1a and aquaporin-4: An in silico comparison with Aspirin and Nimesulide. Bioinformation. 2015;11(4):217–222. doi: 10.6026/97320630011217
  49. Kikuchi K, Tancharoen S, Matsuda F, et al. Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4. Biochemical and Biophysical Research. 2009;390(4):1121–1125. doi: 10.1016/j.bbrc.2009.09.015
  50. Popescu ES, Pirici I, Ciurea RN, et al. Three-dimensional organ scanning reveals brain edema reduction in a rat model of stroke treated with an aquaporin 4 inhibitor. Rom J Morphol Embryol. 2017;58:59–66.
  51. Novikov VE, Levchenkova OS, Pozhilova EV. Preconditioning as a method of metabolic adaptation to hypoxia and ischemia. Vestnik of the Smolensk State Medical Academy. 2018;17(1):69–79. (In Russ.)
  52. Novikov VE, Levchenkova OS, Pozhilova EV. Pharmacological preconditioning: opportunities and prospects. Vestnik of the Smolensk state medical Academy. 2020;19(2):36–49. (In Russ.) doi: 10.37903/vsgma.2020:2.6
  53. Hoshi A, Yamamoto T, Shimizu K, et al. Chemical preconditioning-induced reactive astrocytosis contributes to the reduction of post-ischemic edema through aquaporin-4 downregulation. Exp Neurol. 2011;227:89–95. doi: 10.1016/j.expneurol.2010.09.016
  54. Levchenkova OS, Novikov VE. Possibilities of pharmacological preconditioning. Vestnik of the Russian Academy of medical Sciences. 2016;71(1):16–24. (In Russ.). doi: 10.15690/vramn626
  55. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase in mechanisms of cell adaptation and its pharmacological regulation. Vestnik of the Smolensk State Medical Academy. 2016;15(1):14–22. (In Russ.)
  56. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(2):38–46. (In Russ.) doi: 10.17816/RCF14238-46
  57. Novikov VE, Ponamareva NS, Shabanov PD. Aminotiolovye antigipoksanty pri travmaticheskom oteke mozga. Saint Petersburg: Elbi-SPb; 2008. 176 p.
  58. Pozhilova EV, Novikov VE, Levchenkova OS. The regulatory role of the mitochondrial pore and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):13–19. (In Russ.)
  59. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the Smolensk State Medical Academy. 2015;14(2):13–22. (In Russ.)
  60. Pogilova EV, Novikov VE, Levchenkova OS. The mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):29–36. (In Russ.) doi: 10.17816/RCF14129-36
  61. Ding T, Zhou Y, Sun K, et al. Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis. PLOS One. 2013;8(8): e66751. doi: 10.1371/journal.pone.0066751
  62. Saadoun S, Papadopoulos MC, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci. 2005;118(24):5691–5698. doi: 10.1242/jcs.02680
  63. McCoy ES, Haas BR, Sontheimer H. Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience. 2010;168(4): 971–981. doi: 10.1016/j.neuroscience.2009.09.020
  64. Ponomarev VV, Mazgo NV. Devic’s disease: literature analysis and clinical discussion. International Neurological Journal. 2019;110(8): 51–58. (In Russ.) doi: 10.22141/2224-0713.8.110.2019.187893
  65. Tradtrantip L, Asavapanumas N, Verkman AS. Emerging therapeutic targets for neuromyelitisoptica spectrum disorder. Expert Opin Ther Targets. 2020;24(3):219–229. doi: 10.1080/14728222.2020.1732927
  66. Abe Y, Yasui M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules. 2022;12(4):591. doi: 10.3390/biom12040591
  67. Tradtrantip L, Zhang H, Saadoun S, et al. Anti-Aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol. 2012;71(3):314–322. doi: 10.1002/ana.22657
  68. Verkman AS, Smith AJ, Phuan PW. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opinion on Therapeutic Targets. 2017;21(12):1161–1170. doi: 10.1080/14728222.2017.1398236
  69. Nikolenko VN, Oganesyan MV, Yakhno NN, et al. The brain’s glymphatic system: physiological anatomy and clinical perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):94–100. (In Russ.). doi: 10.14412/2074-2711-2018-4-94-100
  70. Mestre H, Mori Y, Nedergaard M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 2020;43(7):458–466. doi: 10.1016/j.tins.2020.04.003
  71. Wei F, Song J, Zhang C, et al. Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology (Berl). 2019;236(4):1367–1384. doi: 10.1007/s00213-018-5147-6
  72. Badaut J, Brunet J-F, Guérin C. Alteration of glucose metabolism in cultured astrocytes after AQP9-small interference RNA application. Brain Res. 2012;1473:19–24. doi: 10.1016/j.brainres.2012.07.041
  73. Fossdal G, Vik-Mo EO, Sandberg C, et al. Aqp 9 and brain tumour stem cells. Scientific World Journal. 2012;2012:915176. doi: 10.1100/2012/915176
  74. Yang M, Gao F, Liu H, et al. Temporal changes in expression of aquaporin 3, -4, -5 and -8 in rat brains after permanent focal cerebral ischemia. Brain Res. 2009;1290:121–132. doi: 10.1016/j.brainres.2009.07.018
  75. Levchenkova OS, Novikov VE. Antihypoxants: possible mechanisms of action and their clinical uses. Vestnik of the Smolensk State Medical Academy. 2011;10(4):43–57. (In Russ.)
  76. Novikov VE, Ilyuhin SA. Influence of hypoxen on acetylsalicylic acid efficiency in acute inflammation. Russian Journal of Experimental and Clinical Pharmacology. 2013;76(4):32–35. (In Russ.)
  77. Novikov VE, Ilyuhin SA, Pozhilova EV. Influence of metaprot and hypoxen on the inflammatory reaction development in the experiment. Reviews on Clinical Pharmacology and Drug Therapy. 2012;10(4):63–66. (In Russ.) doi: 10.17816/RCF10463-66
  78. González-Dávalos L, Álvarez-Pérez M, Quesada-López T, et al. Glucocorticoid gene regulation of aquaporin-7. Vitam Horm. 2020;112:179–207. doi: 10.1016/bs.vh.2019.08.005
  79. de Maré SW, Venskutonytė R, Eltschkner S, et al. Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7. Structure. 2020;28(2):215–222.e3. doi: 10.1016/j.str.2019.11.011
  80. Zhu SJ, Wang KJ, Gan S, et al. Expression of aquaporin8 in human astrocytomas: correlation with pathologic grade. Biochem Biophys Res Commun. 2013;440(1):168–172. doi: 10.1016/j.bbrc.2013.09.057
  81. Schnabel B, Kuhrt H, Wiedemann P, et al. Osmotic regulation of aquaporin-8 expression in retinal pigment epithelial cells in vitro: Dependence on KATP channel activation. Mol Vis. 2020;26:797–817.
  82. Bestetti S, Medraño-Fernandez I, Galli M, et al. A persulfidation-based mechanism controls aquaporin-8 conductance. Sci Adv. 2018;4(5): eaar5770. doi: 10.1126/sciadv.aar5770

Copyright (c) 2023 ECO-vector LLC



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies