Prospects for the pharmacological validation of the use of platelets as a “peripheral model” of neurons

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Depressive disorders often occur in patients with cardiovascular pathologies and are a predictor of the development of thrombotic events, such as myocardial infarction, acute ischemic cerebrovascular accident, and pulmonary embolism. These are believed to be caused by the structural and biochemical relationship between platelets and brain neurons, which allows us to consider platelets as a marker of central nervous system (CNS) pathologies. This review aimed to assess the relationship between the hemostasis system and the development of depressive disorders using platelets as a “peripheral model” of neurons and evaluate the effectiveness of drugs for the treatment of depression. The study was conducted in accordance with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A systematic literature search was conducted using PubMed, Cochrane, and CINAHL databases from 2018 to 2023, according to the following keywords: “hemostasis,” “acute cerebrovascular accident,” “depression,” “depressive disorders,” “platelets,” “cardiovascular diseases.” The data obtained indicate both a clinical link between depressive disorders and vascular events and the commonality of platelets and CNS cells because of the commonality of the following proteins: transporters and receptors of serotonin or 5-hydroxytryptamine, amyloid precursor protein, and brain neurotrophic factor, which were previously considered specific neural proteins. In addition, a relationship exists between hemostasis dynamics and drug therapy for depression. In this review, changes in hemostasis in terms of platelet activation in patients with depression and vascular disease were critically analyzed. The literature presents diverse mechanisms of platelet induction, which require further study. A rational study of the pathways of platelet activation in patients with depressive disorders will provide a comprehensive understanding of the molecular mechanisms underlying the relationship between hemostasis and depression in various vascular pathologies. Platelet activation in patients with depression and the dynamics of changes in hemostasis parameters during the treatment of depressive disorders allow us to consider hemostasis as a peripheral marker of the CNS and pharmacotherapy.

Full Text

Restricted Access

About the authors

Aleksandr L. Urakov

Izhevsk State Medical University

Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sci. (Medicine)

Russian Federation, Izhevsk

Irina L. Nikitina

Bashkir State Medical University

Email: irennixleo@gmail.com
ORCID iD: 0000-0002-6283-5762
SPIN-code: 4044-3774

MD, Dr. Sci. (Medicine)

Russian Federation, Ufa

Elena E. Klen

Bashkir State Medical University

Email: klen_elena@yahoo.com
ORCID iD: 0000-0001-7538-6030
SPIN-code: 7520-9021

MD, Dr. Sci. (Pharmacy), Professor

Russian Federation, Ufa

Yi Wang

Hangzhou Normal University

Email: yi.wang1122@wmu.edu.cn
ORCID iD: 0000-0001-9048-0092
Scopus Author ID: 55969091300

MD, Professor

China, Hangzhou

Aleksandr V. Samorodov

Bashkir State Medical University

Email: avsamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X
SPIN-code: 2396-1934

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, Ufa

References

  1. Sama J, Vaidya D, Mukherjee M, Williams M. Effects of clinical depression on left ventricular dysfunction in patients with acute coronary syndrome. J Thromb Thrombolysis. 2021;51(3):693–700. doi: 10.1007/s11239-020-02268-4
  2. Amadio P, Zarà M, Sandrini L, et al. Depression and cardiovascular disease: the viewpoint of platelet. Int J Mol Sci. 2020;21(20):7560. doi: 10.3390/ijms21207560
  3. O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischemic and intracerebral hemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2019;376(9735):112–23. doi: 10.1016/S0140-6736(10)60834-3
  4. Bucciarelli V, Caterino AL, Bianco F, et al. Depression and cardiovascular disease: The deep blue sea of women’s heart. Trends in Cardiovasc Med. 2020;30(3):170–176. doi: 10.1016/j.tcm.2019.05.001
  5. Zerriaa O, Moula O, Ben Saadi S, et al. Benefits of antidepressant treatment after a stroke. Eur Psychiatry. 2017;41(S1):S315. doi: 10.1016/j.eurpsy.2017.02.225
  6. Van Der Kooy K, Van Hout H, Marwijk H, et al. Depression and the risk for cardiovascular diseases: Systematic review and meta-analysis. Int J Geriatr Psychiatry. 2007;22(7):613–626. doi: 10.1002/gps.1723
  7. Batelaan NM, Seldenrijk A, Bot M, et al. Anxiety and new onset of cardiovascular disease: Critical review and meta-analysis. Br J Psychiatry. 2016;208(3):223–231. doi: 10.1192/bjp.bp.114.156554
  8. Carney RM, Freedland KE. Depression and coronary heart disease. Nat Rev Cardiol. 2016;14(3):145–155. doi: 10.1038/nrcardio.2016.181
  9. Gan Y, Gong Y, Tong X, et al. Depression and the risk of coronary heart disease: A meta-analysis of prospective cohort studies. BMC Psychiatry. 2014;14:371. doi: 10.1186/s12888-014-0371-z
  10. Lichtman JH, Froelicher ES, Blumenthal JA, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations. Circulation. 2014;129(12):1350–1369. doi: 10.1161/CIR.0000000000000019
  11. Canobbio I. Blood platelets: Circulating mirrors of neurons? Res Pract Thromb Haemost. 2019;3:564–565. doi: 10.1002/rth2.12254
  12. Canobbio I, Guidetti GF, Torti M. Platelets in neurological disorders. In: Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: An Update. 2017. P. 1145. doi: 10.1007/978-3-319-47462-5
  13. Tseng WL, Chen TH, Huang CC, et al. Impaired thrombin generation in Reelin-deficient mice: A potential role of plasma Reelin in hemostasis. J Thromb Haemost. 2014;12(12):2054–2064. doi: 10.1111/jth.12736
  14. Canobbio I, Visconte C, Momi S, et al. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood. 2017;130(4):527–536. doi: 10.1182/blood-2017-01-764910
  15. Chacón-Fernández P, Säuberli K, Colzani M, et al. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem. 2016;291(19):9872–9881. doi: 10.1074/jbc.M116.720029
  16. Serpytis P, Navickas P, Lukaviciute L, et al. Gender-Based differences in anxiety and depression following acute myocardial infarction. Arq Bras Cardiol. 2018;111(5):676–683. doi: 10.5935/abc.20180161
  17. Malzberg B. Mortality among patients with involution melancholia. Am J Psychiatry. 1937;93(3):1231–1238. doi: 10.1176/ajp.93.5.1231
  18. Koenig HG, Murberg TA, Bru E, et al. Depression in hospitalized older patients with congestive heart failure. Gen Hosp Psychiatry. 1998;20(1):29–43. doi: 10.1016/S0163-8343(98)80001-7
  19. Gimeno D, Kivimäki M, Brunner EJ, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–423. doi: 10.1017/S0033291708003723
  20. Kalogeropoulos A, Georgiopoulou V, Psaty BM, et al. Inflammatory markers and incident heart failure risk in older adults. The Health ABC (Health, Aging, and Body Composition) study. 2010;55(19): 2129–2137. doi: 10.1016/j.jacc.2009.12.045
  21. Williams M.S., Ziegelstein R.C., McCann U.D., et al. Platelet serotonin signaling in patients with cardiovascular disease and comorbid depression. Psychosom Med. 2019;81(4):352–362. doi: 10.1097/PSY.0000000000000689
  22. Mommersteeg PM, Schoemaker RG, Naudé PJ, et al. Depression and markers of inflammation as predictors of all-cause mortality in heart failure. Brain Behav Immun. 2016;57:144–150. doi: 10.1016/j.bbi.2016.03.012
  23. Musselman DL, Aaron T, Amita KM, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996;153(10): 1313–1317. doi: 10.1176/ajp.153.10.1313
  24. Koudouovoh-Tripp P, Hüfner K, Egeter J, et al. Platelet activity: the impact of acute and chronic mental stress. J Neuroimmune Pharmacol. 2021;16(2):500–512. doi: 10.1007/s11481-020-09945-4
  25. Samad Z, Boyle S, Ersboll M, et al. Sex differences in platelet reactivity and cardiovascular and psychological response to mental stress in patients with stable ischemic heart disease: insights from the REMIT study. J Am Coll Cardiol. 2014;64(16):1669–1678. doi: 10.1016/j.jacc.2014.04.087
  26. Goubau C, Buyse GM, Van Geet C, Freson K. The contribution of platelet studies to the understanding of disease mechanisms in complex and monogenetic neurological disorders. Dev Med Child Neurol. 2014;56(8):724–731. doi: 10.1111/dmcn.12421
  27. Ponomarev ED. Fresh evidence for platelets as neuronal and innate immune cells: their role in the activation, differentiation, and deactivation of Th1, Th17, and tregs during tissue inflammation. Front Immunol. 2018;9:406. doi: 10.3389/fimmu.2018.00406
  28. Izzi B, Tirozzi A, Cerletti C, et al. Beyond haemostasis and thrombosis: platelets in depression and its co-morbidities. Int J Mol Sci. 2020;21(22):8817. doi: 10.3390/ijms21228817
  29. Canobbio I, Guidetti GF, Torti M. Platelets in neurological disorders. In: Platelets in Thrombotic and Non-Thrombotic Disorders. Springer International: Cham, Switzerland. 2017. P. 513–530. doi: 10.1007/978-3-319-47462-5_35
  30. Canobbio I, Guidetti GF, Oliviero B, et al. Amyloid beta-peptide-dependent activation of human platelets: Essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochem J. 2014;462(3):513–523. doi: 10.1042/BJ20140307
  31. Yubero-Lahoz S, Robledo P, Farré M, de laTorre R. Platelet SERT as a peripheral biomarker of serotonergic neurotransmission in the central nervous system. Curr Med Chem. 2013;20(11):1382–1396. doi: 10.2174/0929867311320110003
  32. Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36(2):195–198. doi: 10.1007/s10555-017-9677-x
  33. Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels. Mol Interv. 2010;10(4):231–241. doi: 10.1124/mi.10.4.6
  34. Mammadova-Bach E, Mauler M, Braun A, Duerschmied D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets. 2018;29(6):541–548. doi: 10.1080/09537104.2018.1478072
  35. Zhuang X, Xu H, Fang Z, et al. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur J Pharmacol. 2018;834:213–220. doi: 10.1016/j.ejphar.2018.07.033
  36. Kitazume S, Yoshihisa A, Yamaki T, et al. Soluble amyloid precursor protein 770 is released from inflamed endothelial cells and activated platelets: A novel biomarker for acute coronary syndrome. J Biol Chem. 2012;287(48):40817–40825. doi: 10.1074/jbc.M112.398578
  37. Stakos DA, Stamatelopoulos K, Bampatsias D, et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar. J Am Coll Cardiol. 2020;75(8): 952–967. doi: 10.1016/j.jacc.2019.12.033
  38. Jarre A, Gowert NS, Donner L, et al. Pre-activated blood platelets and a pro-thrombotic phenotype in APP23 mice modeling Alzheimer’s disease. Cell Signal. 2014;26(9):2040–2050. doi: 10.1016/j.cellsig.2014.05.019
  39. Visconte C, Canino J, Guidetti GF, et al. Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cell Signal. 2018;52:95–102. doi: 10.1016/j.cellsig.2018.08.017
  40. Mazinani N, Strilchuk AW, Baylis JR, et al. Bleeding is increased in amyloid precursor protein knockout mouse. Res Pract Thromb Haemost. 2020;4(5):823–828. doi: 10.1002/rth2.12375
  41. Ramos-Cejudo J, Johnson AD, Beiser A, et al. Platelet function is associated with dementia risk in the framingham heart study. J Am Heart Assoc. 2022;11(9):e023918. doi: 10.1161/JAHA.121.023918
  42. Wang Q, Shi Y, Qi X, et al. Platelet-derived amyloid-β protein precursor as a biomarker of Alzheimer’s disease. J Alzheimers Dis. 2022;88(2):589–599. doi: 10.3233/JAD-220122
  43. Shi Y, Gu L, Wang Q, Gao L, et al. Platelet amyloid-β protein precursor (AβPP) ratio and phosphorylated tau as promising indicators for early Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2020;75(4):664–670. doi: 10.1093/gerona/glz005
  44. Fu J, Lai X, Huang Y, et al. Meta-analysis and systematic review of peripheral platelet-associated biomarkers to explore the pathophysiology of Alzheimer’s disease. BMC Neurol. 2023;23(1):66. doi: 10.1186/s12883-023-03099-5
  45. Zagrebelsky M, Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014;76:628–638. doi: 10.1016/j.neuropharm.2013.05.029
  46. Naegelin Y, Dingsdale H, Säuberli K, et al. Measuring and validating the levels of brain-derived neurotrophic factor in human serum. eNeuro. 2018;5(2):ENEURO.0419-17.201
  47. Amadio P, Zarà M, Sandrini L, et al. Depression and cardiovascular disease: the viewpoint of platelets. Int J Mol Sci. 2020;21(20):7560. doi: 10.3390/ijms21207560
  48. Chacon-Fernandez P, Sauberli K, Colzani M, et al. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem. 2016;291(19):9872–9881. doi: 10.1074/jbc.M116.720029
  49. Serra-Millas M, Lopez-Vilchez I, Navarro V, et al. Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology (Berl). 2011;216(1):1–8. doi: 10.1007/s00213-011-2180-0
  50. Betti L, Palego L, Unti E, et al. Brain-derived neurotrophic factor (BDNF) and serotonin transporter (sert) in platelets of patients with mild huntington’s disease: relationships with social cognition symptoms. Arch Ital Biol. 2018;156(1–2):27–39. doi: 10.12871/00039829201813
  51. Falaschi V, Palego L, Marazziti D, et al. Variation of circulating brain-derived neurotrophic factor (BDNF) in depression: relationships with inflammatory indices, metabolic status and patients’ clinical features. Life (Basel). 2023;13(7):1555. doi: 10.3390/life13071555
  52. Tschorn M, Kuhlmann SL, Rieckmann N, et al. Brain-derived neurotrophic factor, depressive symptoms and somatic comorbidity in patients with coronary heart disease. Acta Neuropsychiatr. 2021;33(1):22–30. doi: 10.1017/neu.2020.31
  53. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59(12):1116–1127. doi: 10.1016/j.biopsych.2006.02.013
  54. Liu CY, Jiang XX, Zhu YH, Wei DN. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: Role of brain-derived neurotrophic factor. Neuroscience. 2012;223:219–224. doi: 10.1016/j.neuroscience.2012.08.010
  55. Karege F, Bondolfi G, Gervasoni N, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–1072. doi: 10.1016/j.biopsych.2005.01.008
  56. Saito S, Watanabe K, Hashimoto E, Saito T. Low serum BDNF and food intake regulation: A possible new explanation of the pathophysiology of eating disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):312–316. doi: 10.1016/j.pnpbp.2008.12.009
  57. Canan F, Dikici S, Kutlucan A, et al. Association of mean platelet volume with DSM-IV major depression in a large community-based population: The MELEN study. J Psychiatr Res. 2012;46(3):298–302. doi: 10.1016/j.jpsychires.2011.11.016
  58. Cai L, Xu L, Wei L, Chen W. Relationship of mean platelet volume to MDD: a retrospective study. Shanghai Arch Psychiatry. 2017;29(1):21–29. doi: 10.11919/j.issn.1002-0829.216082
  59. Bondade S, Supriya Seema HS, Shivakumar BK. Mean platelet volume in depression and anxiety disorder — a hospital based case-control study. Int Neuropsychiatr Dis J. 2018;11(4):1–8. doi: 10.9734/INDJ/2018/42988
  60. Ataoglu A, Canan F. Mean platelet volume in patients with major depression: Effect of escitalopram treatment. J Clin Psychopharmacol. 2009;29(4):368–371. doi: 10.1097/JCP.0b013e3181abdfd7
  61. Aleksovski B, Neceva V, Vujovic V, et al. SSRI-reduced platelet reactivity in non-responding patients with life-long Recurrent Depressive Disorder: Detection and involved mechanisms. Thromb Res. 2018;165:24–32. doi: 10.1016/j.thromres.2018.03.006
  62. Gialluisi A, Izzi B, Di Castelnuovo A, et al. Revisiting the link between platelets and depression through genetic epidemiology: New insights from platelet distribution width. Haematologica. 2019;105(5): e246–e248. doi: 10.3324/haematol.2019.222513
  63. Gialluisi A, Bonaccio M, Di Castelnuovo A, et al. Lifestyle and biological factors influence the relationship between mental health and low-grade inflammation. Brain Behav Immun. 2020;85:4–13. doi: 10.1016/j.bbi.2019.04.041
  64. Wang JM, Yang KD, Wu SY, et al. Platelet parameters, c-reactive protein, and depression: an association study. Int J Gen Med. 2022;15:243–251. doi: 10.2147/IJGM.S338558

Copyright (c) 2023 ECO-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies