Benzodiazepine tranquilizers abolish the stress-induced increase of the brain ghrelin level in DANIO RERIO

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Danio rerio has firmly established itself as a successful model for research in many areas of biology and medicine, first of all for developing new medicines.

The aim of our study was to evaluate ghrelin level in zebrafish brain after stress and after phenazepam usage on stressed fish.

Methods. In our study 96 Danio rerio, predator Cichlasoma nicaraguensis have been used. The fish have been kept at a normal room temperature (22–23 °C) with standard feeding time (twice per day). The level of neuropeptides has been tested by ELISA test. During experiment a fish has been firstly placed in a beaker with a dissolved pharmacological substance, then has been transferred into a tank with predator. In the end of experiment, it has been put into a novel tank for 6 min. The decapitation has been made. The brain has been divided into three anatomical parts: telencephalon just behind the olfactory bulb, the middle part – corpora bigemia and cerebellum, which is situated behind the corpora bigemia. After that the material for ELISA test was made using GhrelinFISH, MyBioSource ELISA kit.

Results. In the control group ghrelin has been determined only in the cerebellum in 57.14% of all fish. In the experiment with predator ghrelin has been found in all tested brain parts of fish, but in the telencephalon there was the highest level. In the experiment with phenazepam usage only and phenazepam administration after predator stress, the ghrelin value has not been determined at all.

Conclusion. Thus we have found out that the ghrelin value increases after predator stress and the drug phenazepam eliminated it completely after its administration. We may suppose that the administration of anxiolytics such as phenazepam can reduce the anxiety in Danio rerio.

Full Text

Restricted Access

About the authors

Aleksandra A. Blazhenko

Institute of Experimental Medicine

Author for correspondence.
Email: alexandrablazhenko@gmail.com

Post-graduate Fellow, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Platon P. Khokhlov

Institute of Experimental Medicine

Email: platonkh@list.ru

PhD (Biochemistry), Senior Researcher, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Ilia Yu. Tissen

Institute of Experimental Medicine

Email: iljatis@mail.ru

PhD, Senior Researcher, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Aleksandr S. Devyashin

Institute of Experimental Medicine

Email: alexsanta93@mail.ru

Post-graduate Fellow, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Andrei A. Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru

Dr. Biol. Sci. (Pharmacology), Head of the Laboratory of General Pharmacology, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Sergey N. Proshin

Saint Petersburg State University

Email: aalebedev-iem@rambler.ru

Dr. Med. Sci., Department of Pharmacology, Medical Faculty

Russian Federation, Saint Petersburg

Eugenii R. Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru

PhD (Pathophysiology), Head of the Laboratory of Chemistry and Pharmacology of Medicinal Compounds, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Petr D. Shabanov

Institute of Experimental Medicine; Saint Petersburg State University

Email: pdshabanov@mail.ru

Dr. Med. Sci. (Pharmacology), Professor and Head, S.V. Anichkov Department of Neuropharmacology, Professor, Dept. of Basic Problems of Medicine and Medical Technologies

Russian Federation, Saint Petersburg

References

  1. Лебедев В.А., Лебедев А.А., Бычков Е.Р., Шабанов П.Д. Возможность использования поведенческих ответов Danio rerio в оценке дозозависимых эффектов феназепама // Лабораторные животные для научных исследований. – 2018. – № 1. – С. 12–21. [Lebedev VA, Lebedev AA, Bychkov ER, Shabanov PD. Probability of using the behavioral responses of Danio rerio in assessment of dose-dependent effects of phenazepam. Laboratornye zhivotnye dlya nauchnykh issledovaniy. 2018;(1):12-21 (In Russ.)]. https://doi.org/10.29296/2618723X-2018-01-02.
  2. Шабанов П.Д., Лебедев В.А., Лебедев А.А., Бычков Е.Р. Влияние стресса новизны на поведенческие ответы Danio rerio и оценка дозозависимых эффектов анксиолитиков бензодиазепинового ряда на примере феназепама // Обзоры по клинической фармакологии и лекарственной терапии. – 2017. – Т. 15. – № 3. – С. 57–63. [Shabanov PD, Lebedev VA, Lebedev AA, Bychkov ER. Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):57-63. (In Russ.)]. https://doi.org/10.17816/RCF15357-63.
  3. Шабанов П.Д., Лебедев А.А., Бычков Е.Р., и др. Нейрохимические механизмы и фармакология грелинов // Обзоры по клинической фармакологии и лекарственной терапии. – 2020. – Т. 18. – № 1. – С. 5–22. [Shabanov PD, Lebedev AA, Bychkov ER, et al. Neurochemical mechanisms and pharmacology of ghrelins. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):5-22. (In Russ.)]. https://doi.org/10.17816/RCF1815-22.
  4. World Health Organization. Depression and Other Common Mental Disorders. Global Health Estimstes. WHO; 2017.
  5. Bovenkerk B, Kaldewaij F. The use of animal models in behavioural neuroscience research. Curr Top Behav Neurosci. 2015;19:17-46. https://doi.org/10.1007/7854_2014_329.
  6. de Abreu MS, Friend AJ, Demin KA, et al. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods. 2018;94(Pt 2):16-22. https://doi.org/10.1016/j.vascn.2018.07.002.
  7. Goldstein JL, Zhao TJ, Li RL, et al. Surviving starvation: essential role of the ghrelin-growth hormone axis. Cold Spring Harb Symp Quant Biol. 2011;76:121-127. https://doi.org/10.1101/sqb.2011.76.010447.
  8. Gorwood P, Blanchet-Collet C, Chartrel N, et al. New Insights in Anorexia Nervosa. Front Neurosci. 2016;10:256. https://doi.org/10.3389/fnins.2016.00256.
  9. Griffiths BB, Schoonheim PJ, Ziv L, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6:68. https://doi.org/10.3389/fnbeh.2012. 00068.
  10. Guo S, Wagle M, Mathur P. Toward molecular genetic dissection of neural circuits for emotional and motivational behaviors. Dev Neurobiol. 2012;72(3):358-365. https://doi.org/10.1002/dneu.20927.
  11. Lebedev A, Khokhlov P, Tissen I, et al. Expression of gambling elements is connected with content of desacyl-ghrelin in the limbic structures and the brain receptors activity. Eur Neuropsychopharmacol. 2019:29(Suppl 6):S109-S110. https://doi.org/10.1016/j.euroneuro.2019.09.187.
  12. Lux V, Kendler KS. Deconstructing major depression: a validation study of the DSM-IV symptomatic criteria. Psychol Med. 2010;40(10):1679-1690. https://doi.org/10.1017/S0033291709992157.
  13. Menke AL, Spitsbergen JM, Wolterbeek AP, Woutersen RA. Normal anatomy and histology of the adult zebrafish. Toxicol Pathol. 2011;39(5):759-775. https://doi.org/10.1177/0192623311409597.
  14. Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42(4):252-264. https://doi.org/10.3109/07853891003769957.
  15. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730-732. https://doi.org/10.1038/266730a0.
  16. Reynolds SM, Berridge KC. Fear and Feeding in the Nucleus Accumbens Shell: Rostrocaudal Segregation of GABA-Elicited Defensive Behavior Versus Eating Behavior. J Neurosci. 2001;21(9):3261-3270. https://doi.org/10.1523/jneurosci.21-09-03261.2001.
  17. Silverman JL, Yang M, Turner SM, et al. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience. 2010;171(4):1197-1208. https://doi.org/10.1016/j.neuroscience.2010.09.059.
  18. Willner P. Animal models of depression: validity and applications. Adv Biochem Psychopharmacol. 1995;49:19-41.

Copyright (c) 2020 Blazhenko A.A., Khokhlov P.P., Tissen I.Y., Devyashin A.S., Lebedev A.A., Proshin S.N., Bychkov E.R., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies