The effectiveness of the original anticonvulsant Galodif® — a GABAA receptor modulator for alcohol withdrawal syndrome

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The development of new drugs to improve the effectiveness of treatment and rehabilitation programs for patients suffering from addiction diseases, which are non-addictive and have a stimulating effect on detoxification processes in the body, can increase the effectiveness of therapy and reduce the cost of treatment. A deficiency of GABAergic inhibition in brain structures plays a leading role in the occurrence of paroxysmalness. The innovative anticonvulsant Galodif® (1-[(3-chlorophenyl)(phenyl)methyl]urea), a GABAA receptor modulator, has low toxicity and hepatoprotective properties, which allows it to be recommended for use in the treatment of patients with alcohol dependence.

AIM: The aim of this study is to evaluation of the effectiveness of the use of the anticonvulsant drug galodif1 in complex therapy in patients with alcohol dependence with compulsive and paroxysmal disorders with pathological craving for alcohol when withdrawing of alcohol.

MATERIALS AND METHODS: A limited open-type clinical study of the therapeutic effectiveness of the innovative anticonvulsant galodif1 included 128 male patients (average age 38.3 ± 8.9 years) with a diagnosis of “Mental and behavioral disorders as a result of alcohol consumption, dependence syndrome” (F10.232) and “Mental and behavioral disorders as a result of alcohol consumption, withdrawal states” (F10.302). 68 patients received Galodif® 300 mg per day as an anticonvulsant for 21 days. 60 patients made up the comparison group, receiving carbamazepine at a dose of 400 mg per day.

RESULTS: The use of the anticonvulsant Galodif® in complex therapy of patients revealed: normothymoleptic activity of the drug; when assessing depression on the Hamilton Depression Rating Scale (HDRS), the average total score decreased from 28.3 ± 1.3 to 5.7 ± 1.9, and a reduction in unmotivated fear and anxiety was noted; vegetative stabilizing effect with a sympathicolytic component with normalization of heart rate; reduction of headaches; weakening or disappearance of pathological desire during withdrawal syndrome in 88% of cases, in the post-withdrawal state — in 57% of cases; taking the drug did not cause any unwanted side effects.

CONCLUSIONS: The use of the anticonvulsant Galodif®, which modulates GABAA receptors, has low toxicity and detoxification properties and does not cause side effects, has been proposed as one of the modern pharmacotherapeutic approaches in the treatment of patients with alcohol dependence.

Full Text

Restricted Access

About the authors

Tamara V. Shushpanova

Tomsk National Research Medical Center of the Russian Academy of Sciences

Author for correspondence.
Email: shush59@mail.ru
ORCID iD: 0000-0002-9455-0358
SPIN-code: 9158-9235
Scopus Author ID: 6506299310
ResearcherId: J-2817-2017

MD, Cand. Sci. (Medicine), Mental Health Research Institute

Russian Federation, Tomsk

Anna I. Mandel

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: anna-mandel@mail.ru
ORCID iD: 0000-0002-6020-6604
SPIN-code: 7428-9823
Scopus Author ID: 57197930313
ResearcherId: J-1692-2017

MD, Dr. Sci. (Medicine), Professor, Mental Health Research Institute

Russian Federation, Tomsk

Nikolay A. Bokhan

Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University

Email: mental@tnimc.ru
ORCID iD: 0000-0002-1052-855X
SPIN-code: 2419-1263
Scopus Author ID: 6506895310
ResearcherId: P-1720-2014

MD, Dr. Sci. (Medicine), Professor, Academician of Russian Academy of Sciences, Mental Health Research Institute

Russian Federation, Tomsk; Tomsk

Evgeny D. Schastnyy

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: evgeny.schastnyy@gmail.com
ORCID iD: 0000-0003-2148-297X
SPIN-code: 6482-2439
Scopus Author ID: 57207962881
ResearcherId: S-3674-2016

MD, Dr. Sci. (Medicine), Professor, Mental Health Research Institute

Russian Federation, Tomsk

References

  1. Anokhina IP. The basic biological mechanisms of substance use disorders. Journal of Addiction Problems. 2017;2–3:15–41.
  2. Lebedev AA, Lukashkova VV, Pshenichnaya AG, et al. Emotiogenic effects of antorex, a novel OX1R antagonist, on emotional manifestations of anxiety and compulsiveness in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):151–158. doi: 10.17816/RCF492319
  3. Anokhina IP. New insight into the role of dopamine in the development of alcoholism. Journal of Addiction Problems. 2021;(6(201)):17–27. doi: 10.47877/0234-0623_2021_06_17
  4. Bohan NA, Semke VY. Comorbidity in narcology. Tomsk: Tomsk University Publishing House; 2009. 498 p. (In Russ.)
  5. Bohan NA, Mandel AI, Ivanova SA, et al. Old and new issues of addiction medicine in the context of interdisciplinary research. Journal of Addiction Problems. 2017;1:28–62.
  6. Kibitov AO, Shamakina IYu. Biological research in addiction medicine: current state of the art and future development. Journal of Addiction Problems. 2021;6(201):6–16. doi: 10.47877/0234-0623_2021_06_6
  7. Krupitsky EM, Rudenko AA, Tsoi MV, et al. The relationship between the craving for alcohol and relapse of the disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2007;107(S1):32–36. (In Russ.)
  8. Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016;67:23–50. doi: 10.1146/annurev-psych-122414-033457
  9. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–238. doi: 10.1038/npp.2009.110
  10. Wolffgramm J, Heyne A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res. 1995;70(1):77–94. doi: 10.1016/0166-4328(95)00131-c
  11. Augier E, Barbier E, Dulman RS, et al. A molecular mechanism for choosing alcohol over an alternative reward. Science. 2018;360(6395):1321–1326. doi: 10.1126/science.aao1157
  12. Seif T, Chang SJ, Simms JA, et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci. 2013;16(8):1094–1100. doi: 10.1038/nn.3445
  13. Domi E, Xu L, Toivainen S, et al. A neural substrate of compulsive alcohol use. Sci Adv. 2021;7(34):eabg9045. doi: 10.1126/sciadv.abg9045
  14. Ballenger JC, Post RM. Carbamazepine in alcohol withdrawal syndromes and schizophrenic psychoses. Psychopharmacology Bullutin. 1984;20(3):572–584.
  15. Shushpanova TV, Solonsky AV, Shumilova SN, Bokhan NA. Formation of neuronal elements of the neuroimmune system of the human embryonic brain under the prenatal influence of alcohol. Siberian Journal of Psychiatry and Narcology. 2023;1(118):14–22. doi: 10.26617/1810-3111-2023-1(118)-14-22
  16. Shushpanova TV, Bokhan NA, Lebedeva VF, et al. The effect of chronic alcohol abuse on the benzodiazepine receptor system in various areas of the human brain. African Journal of Psychiatry (South Africa). 2016;19(3):1000365. doi: 10.4172/2378-5756.1000365
  17. Shushpanova TV, Solonskii AV, Shushpanova OV. Molecular-cellular targets of the pathogenetic action of ethanol in the human brain in ontogenesis and the possibility of targeted therapy aimed at correcting the effect of pathogenic factors. In: Drug addiction. Ed. by F. Zhao, co-ed. by M. Li. London, United Kingdom: Intech Open, 73–102 (2018). doi: 10.5772/intechopen.70103
  18. Volkow ND, Boyle M. Neuroscience of addiction: relevance to prevention and treatment. Am J Psychiatry. 2018;175(8):729–740. doi: 10.1176/appi.ajp.2018.17101174
  19. Shushpanova TV, Bokhan NA, Stankevich KS, et al. An innovatory GABA-A receptor modularor — microsomal cytochrome P-450 liver oxidase system activator in patients with alcoholism. Pharmaceutical Chemistry Journal. 2021;54(11):1093–1100. doi: 10.1007/s11094-021-02327-x
  20. Fahlke C, Berggren U, Berglund KJ, et al. Neuroendocrine assessment of serotonergic, dopaminergic, and noradrenergic functions in alcohol-dependent individuals. Alcohol Clin Exp Res. 2012;36(1):97–103. doi: 10.1111/j.1530-0277.2011.01598.x
  21. Kroener S, Mulholland PJ, New NN, et al. Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex. PLoS One. 2012;7(5):e37541. doi: 10.1371/journal.pone.0037541
  22. Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Chronic intermittent ethanol exposure enhances the excitability and synaptic plasticity of lateral orbitofrontal cortex neurons and induces a tolerance to the acute inhibitory actions of ethanol. Neuropsychopharmacology. 2016;41(4):1112–1127. doi: 10.1038/npp.2015.250
  23. Olsen RW, Liang J. Role of GABAA receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain. 2017;10(1):45. doi: 10.1186/s13041-017-0325-8
  24. Osby U, Liljenberg J, Kockum I, et al. Genes and alcohol. Eur Psychiatry. 2010;25(5):281–283. doi: 10.1016/j.eurpsy.2010.01.004
  25. Pascoli V, Hiver A, Van Zessen R, et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature. 2018;564(7736):366–371. doi: 10.1038/s41586-018-0789-4
  26. Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology. 2017;122:85–99. doi: 10.1016/j.neuropharm
  27. Shushpanova TV, Solonskii AV. Synaptogenesis and the formation of benzodiazepinereceptors in the human brain in conditions of prenatal alcoholization. Neuroscience and Behavioral Physiology. 2013;43(4):423–430. doi: 10.1007/s11055-013-9749-5
  28. Shushpanova TV, Bokhan NA, Kuksenok VYu, et al. A novel urea derivative anticonvulsant: in vivo biological evaluation, radioreceptor analysis of GABAA receptors and molecular docking studies of enantiomers. Mendeleev Communications. 2023;33(4):546–549. doi: 10.1016/j.mencom.2023.06.034
  29. Vasilieva SN, Simutkin GG, Schastnyy ED, et al. Affective disorders in comorbidity with alcohol addiction: clinical and dynamic features, social adaptation level of patients. Bulletin of Siberian Medicine. 2020;19(1):29–35. doi: 10.20538/1682-0363-2020-1-29-35
  30. Gofman AG, Ponizovskiy PA. On comorbidity of depression and alcohol addiction. Journal of Addiction Problems. 2017;4–5:103–112.
  31. Kysel NI, Bedarev RY, Mandel AI, et al. Algorithm for personalized therapy of patients with alcoholism with comorbid disorders of the detoxifying function of the liver and cognitive disorders. Siberian Herald of Psychiatry and Addiction Psychiatry. 2022;117(4):33–43. doi: 10.26617/1810-3111-2022-4(117)-33-43
  32. Krupitsky EM, Akhmetova EA, Asadullin AR. Pharmacogenetics of chemical addictions. V.M. Bekhterev Review of psychiatry and medical psychology. 2019;(4–1):12–20. doi: 10.31363/2313-7053-2019-4-1-12-20
  33. Nikiforov IA, Nikiforov II, Aronov PV. Alcoholism and comorbid cerebral disorders: A review of literature. Profilakticheskaya Meditsina. 2015;18(3):47–54. (In Russ.) doi: 10.17116/profmed201518347-54
  34. Bellos S, Skapinakis P, Rai D, et al. Cross-cultural patterns of the association between varying levels of alcohol consumption and the common mental disorders of depression and anxiety: secondary analysis of the WHO Collaborative Study on Psychological Problems in General Health Care. Drug Alcohol Depend. 2013;133(3):825–831. doi: 10.1016/j.drugalcdep.2013.08.030
  35. Addolorato G, Leggio L, Hopf FW, et al. Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology. 2012;37(1):163–177. doi: 10.1038/npp.2011.216
  36. Kolik LG. Development of new pharmacologicak agents for the treatment of alcohol dependency with allowance fot individual features. Experimental and Clinical Pharmacology. 2021;84(2):53–58. doi: 10.30906/0869-2092-2021-84-2-53-58
  37. Ballenger JC, Post RM. Kindling as a model for alcohol withdrawal syndromes. Br J Psychiatry. 1978;133:1–14. doi: 10.1192/bjp.133.1.1
  38. Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry. 2019;9(1):255. doi: 10.1038/s41398-019-0591-6
  39. Pati S, Saba K, Salvi SS, et al. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. eLife. 2020;9:e56171.
  40. Wagner FA, Anthony JC. From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology. 2002;26(4):479–488. doi: 10.1016/S0893-133X(01)00367-0
  41. Renteria R, Baltz ET, Gremel CM. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits. Nat Commun. 2018;9(1):211. doi: 10.1038/s41467-017-02615-9
  42. Seif T, Chang SJ, Simms JA, et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci. 2013;16(8):1094–1100. doi: 10.1038/nn.3445
  43. Shushpanova TV, Novozheeva TP, Mandel AI, Knyazeva EM. Molecular targets of the action of innovative anticonvulsant galodif in the therapy of alcohol dependence. Siberian Herald of Psychiatry and addiction Psychiatry. 2018;(2):120–126. doi: 10.26617/1810-3111-2018-2(99)-120-126
  44. Morley KC, Perry CJ, Watt J, et al. New approved and emerging pharmacological approaches to alcohol use disorder: a review of clinical studies. Expert Opin Pharmacother. 2021;22(10):1291–1303. doi: 10.1080/14656566.2021.1892641
  45. Shafie A, Mohammadi-Khanaposhtani V, Asadi M, et al. Novel fused 1,2,3-triazolo-benzodiazepine derivatives as potent anticonvulsant agents: design, synthesis, in vivo, and in silicoevaluations. Molecular Diversity. 2020;24:179–189. doi: 10.1007/s11030-019-09940-9
  46. Markova EV, Savkin IV, Knyazheva MA, Shushpanova TV. Anticonvulsant with immunomodulating properties in alcoholism therapy: experimental study. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;106(1):14–22. doi: 10.26617/1810-3111-2020-1(106)-14-22
  47. Patent RU2436573/12/20/2011. Semke VYa, Shushpanova TV, Novozheeva TP, et al. Method of rehabilitation of patients with alcoholism. (In Russ.)
  48. Altshuler VB, Cherednichenko NV. Quantitative assessment of the structure and dynamics of pathological attraction to alcohol. Journal of Addiction Problems. 1992;(3–4):14–17. (In Russ.)
  49. Spanagel R. Aberrant choice behavior in alcoholism. Science. 2018;360(6395):1298–1299. doi: 10.1126/science.aau0668
  50. Nechaev MO, Sychev DA, Zastrozhin MS, Grishina EA, et al. Anticonvulsants in narcological practice. Prospects for personalized use. Narcology. 2017;(9):103–116. doi: 10.17116/profmed201518347-54
  51. Sivolap YP. Alcoholism and modern methods of its treatment. Psychiatry and Psychopharmacotherapy. 2009;11(4):5–29. (In Russ.)
  52. Seifert J, Peters E, Jahn K, et al. Treatment of alcohol withdrawal: chlormethiazole vs. carbamazepine and the effect on memory performance — a pilot study. Addict Biol. 2004;9(1):43–51. doi: 10.1080/13556210410001674086
  53. Soyka M, Schmidt P, Franz M, et al. Treatment of alcohol withdrawal syndrome with a combination of tiapride/carbamazepine: results of a pooled analysis in 540 patients. Eur Arch Psychiatry Clin Neurosci. 2006;256(7):395–401. doi: 10.1007/s00406-006-0644-8
  54. Altshuler VB, Kravchenko SL. Clinical studies of alcoholism as a source of therapeutic searches. Questions of Narcology. 2010;6: 34–43. (In Russ.)

Copyright (c) 2023 ECO-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies