Immunomodulatory effects of vitamin D and their mechanisms

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For many years, researchers have focused their attention on vitamin D preparations. This interest is explained by the vitamin’s unique biological properties and its specific metabolic transformation in the human body, resulting in the formation of hormone-like compounds capable of influencing gene activity and regulating intracellular functions and metabolic processes. This review analyzes published data on vitamin D vitamers and the potential mechanisms underlying their biological effects. The article presents a detailed description of the metabolic transformation of vitamin D (cholecalciferol and ergocalciferol) and characterizes its major metabolites. The mechanisms mediating the biological effects of calcitriol—the primary active metabolite of vitamin D—are discussed. Its final genomic and nongenomic effects on cells are described. Particular attention is given to the influence of vitamin D on the immune system. Vitamin D’s immunomodulatory effects and the potential mechanisms underlying these effects are discussed. The analysis demonstrates that vitamin D is a critical regulator of immune response. Its immunomodulatory effects are mediated both via cellular genetic mechanisms and by influencing intracellular metabolic processes. The active metabolite of vitamin D affects both the cellular and humoral components of innate immunity, as well as the division, proliferation, and differentiation of T and B lymphocytes, and the levels of various cytokines. The presented findings expand the understanding of the pharmacodynamics of vitamin D preparations and highlight their potential use in the treatment of infectious and autoimmune diseases.

Full Text

Restricted Access

About the authors

Aleksandr V. Vitchuk

Smolensk State Medical University

Author for correspondence.
Email: Djonnyfunt@mail.ru
ORCID iD: 0000-0003-4814-3847
SPIN-code: 3992-0800
Russian Federation, Krupskoi st, Smolensk, 214019

Vasilii E. Novikov

Smolensk State Medical University

Email: nau@sgmu.info
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Krupskoi st, Smolensk, 214019

Raisa Ya. Meshkova

Smolensk State Medical University

Email: Meshkova.raisa@yandex.ru
ORCID iD: 0000-0002-7806-9484
SPIN-code: 8937-1230

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Krupskoi st, Smolensk, 214019

References

  1. Gromova OA, Torshina IYu. Vitamin D — A Paradigm Shift. Guseva EI, Zacharova IN, eds. GEOTAR-Media; 2017. (In Russ.) ISBN: 678-5-9704-4058-2
  2. grls.rosminzdrav.ru [Internet]. State register of medicinal products 2020. Available from: https://grls.rosminzdrav.ru/Default.aspx (In Russ.)
  3. Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med (Berl). 2010;88(5):441–450. doi: 10.1007/s00109-010-0590-9 EDN: NZNOBD
  4. Zhumina AG, Khodkov AV, Sakenova ZT, et al. VDR gene expression and leukemia development. Scientific Review. Biological Sciences. 2016;(4):21–25. EDN: WLXHMJ
  5. Wang J, Thingholm LB, Skiecevičienė J, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–1406. doi: 10.1038/ng.3695
  6. Schwartz GYa. Vitamin D deficiency and its pharmacological correction. RMJ. 2009;17(7):477–486. (In Russ.) EDN: PBPHRT
  7. Zotkin EG, Schwartz GYa. Clinical use of vitamin d and its active metabolites. Effective Pharmacotherapy. 2013;(38):50–59. (In Russ.) EDN: SYBNCV
  8. Bikle D, Christakos S. New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol. 2020;16(4):234–252. doi: 10.1038/s41574-019-0312-5 EDN: TJUSUR
  9. Krzyścin JW, Jarosławski J, Sobolewski PS. A mathematical model for seasonal variability of vitamin D due to solar radiation. J Photochem Photobiol B. 2011;105(1):106–112. doi: 10.1016/j.jphotobiol.2011.07.008
  10. Rizzoli R, Branco J, Brandi ML, et al. Management of osteoporosis of the oldest old. Osteoporos Int. 2014;25(11):2507–2529. doi: 10.1007/s00198-014-2755-9 EDN: FXYUAG
  11. Bendik I, Friedel A, Roos FF. Vitamin D: a critical and essential micronutrient for human health. Front Physiol. 2014;5:248. doi: 10.3389/fphys.2014.00248
  12. Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4:136. doi: 10.3389/fpls.2013.00136
  13. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–1364. doi: 10.3945/ajcn.111.031070
  14. Gromova OA. Features of the pharmacology of a water-soluble form of vitamin D based on micelles. Pediatrician’s Practice. 2014;(6):31–37. (In Russ.) EDN: TKUTYH
  15. Muscogiuri G. Introduction to vitamin D: current evidence and future directions. Eur J Clin Nutr. 2020;74(11):1491–1492. doi: 10.1038/s41430-020-00770-9 EDN: UTKLVW
  16. Ermoolenko VM, Chernysheva NN. Calcitriol: new possibilities of a known compound. Effective Pharmacotherapy. 2010;(38):46–51. (In Russ.) EDN: SMLYHH
  17. Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep. 2018;8:255–267. doi: 10.1016/j.bonr.2018.02.004 EDN: VHGXGC
  18. Xu Y, Baylink DJ, Cao H, et al. Inflammation- and gut-homing macrophages, engineered to de novo overexpress active vitamin D, promoted the regenerative function of intestinal stem cells. Int J Mol Sci. 2021;22(17):9516. doi: 10.3390/ijms22179516 EDN: GNJSCQ
  19. Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol. 2019;10:317. doi: 10.3389/fendo.2019.00317
  20. Maltsev SV, Mansurova GS. Metabolism of vitamin D and means of its main functions implementation. Practical Medicine. 2014;(9(85)):12–18. EDN: TAMUDF
  21. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S-586S. doi: 10.1093/ajcn/88.2.582S
  22. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385
  23. Singh RJ, Taylor RL, Reddy GS, et al. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91(8):3055–3061. doi: 10.1210/jc.2006-0710
  24. Prietl B, Treiber G, Pieber T. Vitamin D and immune function. Nutrients. 2013;5(7):2502–2521. doi: 10.3390/nu5072502
  25. Carlberg C. Molecular endocrinology of vitamin D on the epigenome level. Mol Cell Endocrinol. 2017;453:14–21. doi: 10.1016/j.mce.2017.03.016
  26. Das B, Patra S, Behera C, et al. Genotyping of vitamin D receptor gene polymorphisms using mismatched amplification mutation assay in neonatal sepsis patients of Odisha, eastern India. Infect Genet Evol. 2016;45:40–47. doi: 10.1016/j.meegid.2016.08.013
  27. Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95(2):471–478. doi: 10.1210/jc.2009-1773 EDN: NZWJYV
  28. Krasowski MD, Ni A, Hagey LR, et al. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol Cell Endocrinol. 2011;334(1–2):39–48. doi: 10.1016/j.mce.2010.06.016 EDN: OASRJV
  29. Gupta V. Vitamin D: extra-skeletal effects. J Med Nutr Nutraceuticals. 2012;1(1):17–26. doi: 10.4103/2278-019X.94632
  30. Haussler MR, Livingston S, Sabir ZL, et al. Vitamin D receptor mediates a myriad of biological actions dependent on its 1,25-dihydroxyvitamin D ligand: distinct regulatory themes revealed by induction of Klotho and fibroblast growth factor-23. JBMR Plus. 2020;5(1):e10432. doi: 10.1002/jbm4.10432 EDN: WBMCJB
  31. Pozhilova EV, Novikov VE, Levchenkova OS. The regulatory role of mitochondrial pora and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):13–19. EDN: TEONTP
  32. Pozhilova EV, Novikov VE, Levchenkova OS. The mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):29–36. doi: 10.17816/RCF14129-36 EDN: VVEOFT
  33. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(2):38–46. doi: 10.17816/RCF14238-46 EDN: WFETDV
  34. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase in mechanisms of cell adaptation and its pharmacological regulation. Vestnik of Smolensk State Medical Academy. 2016;15(1):14–22. EDN: VVVMDB
  35. Novikov VE, Levchenkova OS, Pozhilova EV. Preconditioning as a method of metabolic adaptation to hypoxia and ischemia. Vestnik of Smolensk State Medical Academy. 2018;17(1):69–79. EDN: YXHXPI
  36. Novikov VE, Levchenkova OS, Klimkina EI, et al. Potentiation of the hypoxic preconditioning effect by antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):37–44. doi: 10.7816/RCF17137-44 EDN: PHNAKT
  37. Holick MF, Mazzei L, García Menéndez S, et al. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients. 2023;15(3):767. doi: 10.3390/nu15030767 EDN: YUUYPM
  38. Holick MF. Vitamin D and health: evolution, biologic functions, and recommended dietary intakes for vitamin D. Clin Rev Bone Miner Metab. 2009;7(1):3–33. doi: 10.1007/978-1-60327-303-9_1
  39. Bikle DD. Vitamin D and immune function: understanding common pathways. Curr Osteoporos Rep. 2009;7(2):58–63. doi: 10.1007/s11914-009-0011-6 EDN: RLLVQV
  40. Baeke F, Takiishi T, Korf H, et al. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482–496. doi: 10.1016/j.coph.2010.04.001
  41. Płudowski P, Karczmarewicz E, Bayer M, et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe — recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 2013;64(4):319–327. doi: 10.5603/EP.2013.0012 EDN: VDGWAB
  42. Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–2912. doi: 10.4049/jimmunol.173.5.2909
  43. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–1077. doi: 10.1096/fj.04-3284com
  44. Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8(11):e1003017. doi: 10.1371/journal.ppat.1003017 EDN: RJQAQB
  45. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773. doi: 10.1126/science.1123933
  46. da Costa DS, Hygino J, Ferreira TB, et al. Vitamin D modulates different IL-17-secreting T cell subsets in multiple sclerosis patients. J Neuroimmunol. 2016;299:8–18. doi: 10.1016/j.jneuroim.2016.08.005
  47. Dreval AV, Kryukova IV, Barsukov IA. Extra-osseous effects of vitamin D (a review). RMJ. 2017;25(1):53–56. (In Russ.) EDN: ZWTOBD
  48. Gauzzi MC, Purificato C, Donato K, et al. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J Immunol. 2005;174(1):270–276. doi: 10.4049/jimmunol.174.1.270
  49. Bscheider M, Butcher EC. Vitamin D immunoregulation through dendritic cells. Immunology. 2016;148(3):227–236. doi: 10.1111/imm.12610
  50. Griffin MD, Lutz W, Phan VA, et al. Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA. 2001;98(12):6800–6805. doi: 10.1073/pnas.121172198
  51. Besusso D, Saul L, Leech MD, et al. 1,25-Dihydroxyvitamin D3-conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease. Front Immunol. 2015;6:575. doi: 10.3389/fimmu.2015.00575
  52. Bikle DD. Vitamin D: production, metabolism and mechanisms of action. In: Endotext. Feingold KR, Anawalt B, Blackman MR, et al., editors. South Dartmouth (MA); 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278935/
  53. Bora S, Cantorna MT. The role of UVR and vitamin D on T cells and inflammatory bowel disease. Photochem Photobiol Sci. 2017;16(3):347–353. doi: 10.1039/c6pp00266h EDN: GYYKGU

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.