Immunomodulatory effects of vitamin D and their mechanisms
- Authors: Vitchuk A.V.1, Novikov V.E.1, Meshkova R.Y.1
-
Affiliations:
- Smolensk State Medical University
- Issue: Vol 23, No 3 (2025)
- Pages: 233-241
- Section: Reviews
- Submitted: 23.02.2025
- Accepted: 08.10.2025
- Published: 16.10.2025
- URL: https://journals.eco-vector.com/RCF/article/view/660867
- DOI: https://doi.org/10.17816/RCF660867
- EDN: https://elibrary.ru/ZUERQG
- ID: 660867
Cite item
Abstract
For many years, researchers have focused their attention on vitamin D preparations. This interest is explained by the vitamin’s unique biological properties and its specific metabolic transformation in the human body, resulting in the formation of hormone-like compounds capable of influencing gene activity and regulating intracellular functions and metabolic processes. This review analyzes published data on vitamin D vitamers and the potential mechanisms underlying their biological effects. The article presents a detailed description of the metabolic transformation of vitamin D (cholecalciferol and ergocalciferol) and characterizes its major metabolites. The mechanisms mediating the biological effects of calcitriol—the primary active metabolite of vitamin D—are discussed. Its final genomic and nongenomic effects on cells are described. Particular attention is given to the influence of vitamin D on the immune system. Vitamin D’s immunomodulatory effects and the potential mechanisms underlying these effects are discussed. The analysis demonstrates that vitamin D is a critical regulator of immune response. Its immunomodulatory effects are mediated both via cellular genetic mechanisms and by influencing intracellular metabolic processes. The active metabolite of vitamin D affects both the cellular and humoral components of innate immunity, as well as the division, proliferation, and differentiation of T and B lymphocytes, and the levels of various cytokines. The presented findings expand the understanding of the pharmacodynamics of vitamin D preparations and highlight their potential use in the treatment of infectious and autoimmune diseases.
Keywords
Full Text
About the authors
Aleksandr V. Vitchuk
Smolensk State Medical University
Author for correspondence.
Email: Djonnyfunt@mail.ru
ORCID iD: 0000-0003-4814-3847
SPIN-code: 3992-0800
Russian Federation, Krupskoi st, Smolensk, 214019
Vasilii E. Novikov
Smolensk State Medical University
Email: nau@sgmu.info
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Krupskoi st, Smolensk, 214019Raisa Ya. Meshkova
Smolensk State Medical University
Email: Meshkova.raisa@yandex.ru
ORCID iD: 0000-0002-7806-9484
SPIN-code: 8937-1230
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Krupskoi st, Smolensk, 214019References
- Gromova OA, Torshina IYu. Vitamin D — A Paradigm Shift. Guseva EI, Zacharova IN, eds. GEOTAR-Media; 2017. (In Russ.) ISBN: 678-5-9704-4058-2
- grls.rosminzdrav.ru [Internet]. State register of medicinal products 2020. Available from: https://grls.rosminzdrav.ru/Default.aspx (In Russ.)
- Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med (Berl). 2010;88(5):441–450. doi: 10.1007/s00109-010-0590-9 EDN: NZNOBD
- Zhumina AG, Khodkov AV, Sakenova ZT, et al. VDR gene expression and leukemia development. Scientific Review. Biological Sciences. 2016;(4):21–25. EDN: WLXHMJ
- Wang J, Thingholm LB, Skiecevičienė J, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–1406. doi: 10.1038/ng.3695
- Schwartz GYa. Vitamin D deficiency and its pharmacological correction. RMJ. 2009;17(7):477–486. (In Russ.) EDN: PBPHRT
- Zotkin EG, Schwartz GYa. Clinical use of vitamin d and its active metabolites. Effective Pharmacotherapy. 2013;(38):50–59. (In Russ.) EDN: SYBNCV
- Bikle D, Christakos S. New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol. 2020;16(4):234–252. doi: 10.1038/s41574-019-0312-5 EDN: TJUSUR
- Krzyścin JW, Jarosławski J, Sobolewski PS. A mathematical model for seasonal variability of vitamin D due to solar radiation. J Photochem Photobiol B. 2011;105(1):106–112. doi: 10.1016/j.jphotobiol.2011.07.008
- Rizzoli R, Branco J, Brandi ML, et al. Management of osteoporosis of the oldest old. Osteoporos Int. 2014;25(11):2507–2529. doi: 10.1007/s00198-014-2755-9 EDN: FXYUAG
- Bendik I, Friedel A, Roos FF. Vitamin D: a critical and essential micronutrient for human health. Front Physiol. 2014;5:248. doi: 10.3389/fphys.2014.00248
- Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4:136. doi: 10.3389/fpls.2013.00136
- Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–1364. doi: 10.3945/ajcn.111.031070
- Gromova OA. Features of the pharmacology of a water-soluble form of vitamin D based on micelles. Pediatrician’s Practice. 2014;(6):31–37. (In Russ.) EDN: TKUTYH
- Muscogiuri G. Introduction to vitamin D: current evidence and future directions. Eur J Clin Nutr. 2020;74(11):1491–1492. doi: 10.1038/s41430-020-00770-9 EDN: UTKLVW
- Ermoolenko VM, Chernysheva NN. Calcitriol: new possibilities of a known compound. Effective Pharmacotherapy. 2010;(38):46–51. (In Russ.) EDN: SMLYHH
- Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep. 2018;8:255–267. doi: 10.1016/j.bonr.2018.02.004 EDN: VHGXGC
- Xu Y, Baylink DJ, Cao H, et al. Inflammation- and gut-homing macrophages, engineered to de novo overexpress active vitamin D, promoted the regenerative function of intestinal stem cells. Int J Mol Sci. 2021;22(17):9516. doi: 10.3390/ijms22179516 EDN: GNJSCQ
- Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol. 2019;10:317. doi: 10.3389/fendo.2019.00317
- Maltsev SV, Mansurova GS. Metabolism of vitamin D and means of its main functions implementation. Practical Medicine. 2014;(9(85)):12–18. EDN: TAMUDF
- Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S-586S. doi: 10.1093/ajcn/88.2.582S
- Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385
- Singh RJ, Taylor RL, Reddy GS, et al. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91(8):3055–3061. doi: 10.1210/jc.2006-0710
- Prietl B, Treiber G, Pieber T. Vitamin D and immune function. Nutrients. 2013;5(7):2502–2521. doi: 10.3390/nu5072502
- Carlberg C. Molecular endocrinology of vitamin D on the epigenome level. Mol Cell Endocrinol. 2017;453:14–21. doi: 10.1016/j.mce.2017.03.016
- Das B, Patra S, Behera C, et al. Genotyping of vitamin D receptor gene polymorphisms using mismatched amplification mutation assay in neonatal sepsis patients of Odisha, eastern India. Infect Genet Evol. 2016;45:40–47. doi: 10.1016/j.meegid.2016.08.013
- Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95(2):471–478. doi: 10.1210/jc.2009-1773 EDN: NZWJYV
- Krasowski MD, Ni A, Hagey LR, et al. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol Cell Endocrinol. 2011;334(1–2):39–48. doi: 10.1016/j.mce.2010.06.016 EDN: OASRJV
- Gupta V. Vitamin D: extra-skeletal effects. J Med Nutr Nutraceuticals. 2012;1(1):17–26. doi: 10.4103/2278-019X.94632
- Haussler MR, Livingston S, Sabir ZL, et al. Vitamin D receptor mediates a myriad of biological actions dependent on its 1,25-dihydroxyvitamin D ligand: distinct regulatory themes revealed by induction of Klotho and fibroblast growth factor-23. JBMR Plus. 2020;5(1):e10432. doi: 10.1002/jbm4.10432 EDN: WBMCJB
- Pozhilova EV, Novikov VE, Levchenkova OS. The regulatory role of mitochondrial pora and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):13–19. EDN: TEONTP
- Pozhilova EV, Novikov VE, Levchenkova OS. The mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):29–36. doi: 10.17816/RCF14129-36 EDN: VVEOFT
- Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(2):38–46. doi: 10.17816/RCF14238-46 EDN: WFETDV
- Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase in mechanisms of cell adaptation and its pharmacological regulation. Vestnik of Smolensk State Medical Academy. 2016;15(1):14–22. EDN: VVVMDB
- Novikov VE, Levchenkova OS, Pozhilova EV. Preconditioning as a method of metabolic adaptation to hypoxia and ischemia. Vestnik of Smolensk State Medical Academy. 2018;17(1):69–79. EDN: YXHXPI
- Novikov VE, Levchenkova OS, Klimkina EI, et al. Potentiation of the hypoxic preconditioning effect by antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):37–44. doi: 10.7816/RCF17137-44 EDN: PHNAKT
- Holick MF, Mazzei L, García Menéndez S, et al. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients. 2023;15(3):767. doi: 10.3390/nu15030767 EDN: YUUYPM
- Holick MF. Vitamin D and health: evolution, biologic functions, and recommended dietary intakes for vitamin D. Clin Rev Bone Miner Metab. 2009;7(1):3–33. doi: 10.1007/978-1-60327-303-9_1
- Bikle DD. Vitamin D and immune function: understanding common pathways. Curr Osteoporos Rep. 2009;7(2):58–63. doi: 10.1007/s11914-009-0011-6 EDN: RLLVQV
- Baeke F, Takiishi T, Korf H, et al. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482–496. doi: 10.1016/j.coph.2010.04.001
- Płudowski P, Karczmarewicz E, Bayer M, et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe — recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 2013;64(4):319–327. doi: 10.5603/EP.2013.0012 EDN: VDGWAB
- Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–2912. doi: 10.4049/jimmunol.173.5.2909
- Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–1077. doi: 10.1096/fj.04-3284com
- Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8(11):e1003017. doi: 10.1371/journal.ppat.1003017 EDN: RJQAQB
- Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773. doi: 10.1126/science.1123933
- da Costa DS, Hygino J, Ferreira TB, et al. Vitamin D modulates different IL-17-secreting T cell subsets in multiple sclerosis patients. J Neuroimmunol. 2016;299:8–18. doi: 10.1016/j.jneuroim.2016.08.005
- Dreval AV, Kryukova IV, Barsukov IA. Extra-osseous effects of vitamin D (a review). RMJ. 2017;25(1):53–56. (In Russ.) EDN: ZWTOBD
- Gauzzi MC, Purificato C, Donato K, et al. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J Immunol. 2005;174(1):270–276. doi: 10.4049/jimmunol.174.1.270
- Bscheider M, Butcher EC. Vitamin D immunoregulation through dendritic cells. Immunology. 2016;148(3):227–236. doi: 10.1111/imm.12610
- Griffin MD, Lutz W, Phan VA, et al. Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA. 2001;98(12):6800–6805. doi: 10.1073/pnas.121172198
- Besusso D, Saul L, Leech MD, et al. 1,25-Dihydroxyvitamin D3-conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease. Front Immunol. 2015;6:575. doi: 10.3389/fimmu.2015.00575
- Bikle DD. Vitamin D: production, metabolism and mechanisms of action. In: Endotext. Feingold KR, Anawalt B, Blackman MR, et al., editors. South Dartmouth (MA); 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278935/
- Bora S, Cantorna MT. The role of UVR and vitamin D on T cells and inflammatory bowel disease. Photochem Photobiol Sci. 2017;16(3):347–353. doi: 10.1039/c6pp00266h EDN: GYYKGU



