Effect of vasopressin on pain sensitivity, monoamine levels, and brain-derived neurotrophic factor in rats in the early period after vital stress
- Authors: Nikitina A.A.1, Belokoskova S.G.1, Traktirov D.S.1, Maystrenko V.А1, Beznin G.V.1, Karpenko M.N.1, Tsikunov S.G.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 23, No 2 (2025)
- Pages: 203-211
- Section: Original study articles
- Submitted: 21.03.2025
- Accepted: 28.06.2025
- Published: 30.06.2025
- URL: https://journals.eco-vector.com/RCF/article/view/677349
- DOI: https://doi.org/10.17816/RCF677349
- EDN: https://elibrary.ru/QTFIYU
- ID: 677349
Cite item
Abstract
BACKGROUND: At present, studying the mechanisms that potentiate or prevent posttraumatic stress disorder is of particular relevance, as it may help identify new therapeutic approaches. Arginine vasopressin is known to be involved in the modulation of stress and pain responses. However, the effects of this peptide on pain sensitivity and related biochemical mechanisms in a posttraumatic stress disorder model have not been studied.
AIM: The work aimed to evaluate the effects of the synthetic vasopressin analog 1-deamino-8-D-arginine vasopressin (DDAVP) on pain sensitivity, serum corticosterone concentration, brain-derived neurotrophic factor (BDNF) levels, and monoamine content in the parietal cortex and spinal cord in rats during the acute period after vital stress.
METHODS: The study included 41 male Wistar rats. All animals were divided into four groups: five intact rats (control), 12 rats receiving DDAVP, 12 rats exposed to vital stress induced by a single experience of witnessing the death of a partner caused by a predator (tiger python), and 12 rats receiving DDAVP on days 1–5 after vital stress. DDAVP was administered intranasally at a single dose of 2 μg and a cumulative dose of 10 μg. BDNF levels in the parietal cortex and spinal cord, as well as serum corticosterone concentration, were determined using enzyme-linked immunosorbent assay. Levels of norepinephrine (NE), serotonin (5-HT), dopamine (DA), and their metabolites in the brain were measured by high-performance liquid chromatography.
RESULTS: DDAVP administration produced an analgesic effect, accompanied by increased BDNF and NE levels and decreased homovanillic acid (HVA) levels in the sensorimotor cortex. In the spinal cord, DDAVP increased BDNF levels and reduced NE, 5-HT, and 3,4-dihydroxyphenylacetic acid (DOPAC) content. On day 5 after vital stress, rats demonstrated reduced pain sensitivity along with elevated blood corticosterone levels; in the sensorimotor cortex, NE levels increased and HVA levels decreased; in the spinal cord, NE and DOPAC levels decreased. In stressed rats, DDAVP increased pain sensitivity, elevated blood corticosterone levels, increased BDNF, NE, and DA levels in the parietal cortex, and reduced NE, DA, and DOPAC levels in the spinal cord.
CONCLUSION: The analgesic effect of DDAVP was associated with elevated BDNF levels and altered NE and DA metabolism in the sensorimotor cortex and spinal cord, as well as with changes in 5-HT content in the spinal cord. On day 5 after vital stress, rats developed analgesia, which involved glucocorticoid mechanisms and NE and DA signaling at both cortical and spinal cord levels. DDAVP administration during the acute period after vital stress induced hyperalgesia in rats, correlating with increased BDNF levels in the sensorimotor cortex and the involvement of noradrenergic and dopaminergic systems at cortical and spinal cord levels.
Full Text

About the authors
Aleksandra A. Nikitina
Institute of Experimental Medicine
Author for correspondence.
Email: doknikitina@yandex.ru
ORCID iD: 0009-0009-7481-6620
SPIN-code: 5649-2050
Russian Federation, Saint Petersburg
Svetlana G. Belokoskova
Institute of Experimental Medicine
Email: Belokoskova.sg@iemspb.ru
ORCID iD: 0000-0002-0552-4810
SPIN-code: 4317-6620
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgDmitrii S. Traktirov
Institute of Experimental Medicine
Email: ds.traktirov@gmail.com
ORCID iD: 0000-0003-0424-6545
SPIN-code: 3221-1316
Russian Federation, Saint Petersburg
Viktoriya А Maystrenko
Institute of Experimental Medicine
Email: sch_viktoriya@mail.ru
ORCID iD: 0000-0001-7004-7873
SPIN-code: 4842-2576
Russian Federation, Saint Petersburg
Gleb V. Beznin
Institute of Experimental Medicine
Email: beznin.gv@iemspb.ru
ORCID iD: 0000-0001-5730-4265
SPIN-code: 7796-1107
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgMarina N. Karpenko
Institute of Experimental Medicine
Email: mnkarpenko@mail.ru
ORCID iD: 0000-0002-1082-0059
SPIN-code: 6098-2715
Dr. Sci. (Biology), Assistant Professor
Russian Federation, Saint PetersburgSergey G. Tsikunov
Institute of Experimental Medicine
Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-code: 7771-1940
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgReferences
- Stam R. PTSD and stress sensitisation: a tale of brain and body. Part 1: human studies. Neurosci Biobehav Rev. 2007;31(4):530–557. doi: 10.1016/J.NEUBIOREV.2006.11.010
- Yarushkina NI. Stress-induced analgesia: the role of the HPA axis hormones. Integrative physiology. 2020;1(1):23–31. doi: 10.33910/2687-1270-2020-1-1-23-31. EDN: DFQING
- Cecconello AL, Torres ILS, Oliveira C, et al. DHEA administration modulates stress-induced analgesia in rats. Physiol Behav. 2016;157:231–236. doi: 10.1016/J.PHYSBEH.2016.02.004 EDN: WUZTAD
- Belokoskova SG, Tsikunov SG. Vasopressin in mechanisms of stress reactions and modulation of emotion. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(3):5–12. doi: 10.17816/RCF1635-12 EDN: YLTSNF
- Belokoskova SG, Tsikunov SG. Vasopressin in the regulation of brain functions. Saint Petersburg: Art-express; 2020. 256 p. (In Russ.) EDN: UNHGIJ
- Безнин ГВ, Belokoskova SG, Tsikunov SG. The effect of 1-deamino-8-D-arginine vasopressin on the development of behavioral and structural-functional disorders caused by vital stress in rats. Medical Academic Journal. 2016;16(4):14–15. (In Russ.) EDN: XWQKMV
- Belokoskova SG, Tsikunov SG. Vasopressin type 2 receptor agonist 1-deamino-8-D-arginine vasopressin (DDAVP) restores sensitivity in stroke patients. Bulletin of the Russian Military Medical Academy. 2018;20(S3):18–20. (In Russ.) EDN: ZBFKCD
- Appenrodt E, Schnabel R, Schwarzberg H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav. 1998;64(4):543–547. doi: 10.1016/S0031-9384(98)00119-X
- Broadbear JH, Kabel D, Tracy L, Mak P. Oxytocinergic regulation of endogenous as well as drug-induced mood. Pharmacol Biochem Behav. 2014;119:61–71. doi: 10.1016/J.PBB.2013.07.002
- Belokoskova SG, Tsikunov SG. Efficacy of selective agonist V2 vasopressin receptor, 1-dezamino-8-D-arginine-vasopressin, in the treatment of pain in patients with degenerative-dystrophic diseases of the spine. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(3):58–65. doi: 10.17816/RCF14358-65. EDN: WWUKHN
- Nikitina AA, Belokoskova SG, Maystrenko VA, et al. The participation of monoamines in the realization of vasopressin analgesic effects during electrical stimulation of paws in rats. Medical Academic Journal. 2024;24(2):45–52. doi: 10.17816/MAJ633203 EDN: LFUIDW
- Nikitina AA, Maistrenko VA, Tiutiunnik TV, et al. Involvement of noradrenaline, serotonin and brain neurotrophic factor in the analgetic effects of vasopressin in the thermal tail immersion test in rats. Russian biomedical research. 2024;9(2):42–49. doi: 10.56871/RBR.2024.74.37.005 EDN: QMLPHF
- Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator. Progr Neurobiol. 2008;85(3):297–317. doi: 10.1016/J.PNEUROBIO.2008.04.004
- Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;12:51. doi: 10.3389/FNCIR.2018.00051
- Kritskaya DV, Karpenko MN, Tsikunov SG. Monoamines in the hippocampus, hypothalamus and striatum of rats under metabolic and psychogenic stress. Medical Academic Journal. 2016; 16(4):25–26. (In Russ.) EDN: XWQKQR
- Pyurveev SS, Lebedev AA, Tsikunov SG, et al. Psychic trauma causes increased impulsivity in a model of gambling addiction by altering dopamine and serotonin metabolism in the prefrontal cortex. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(4):329–338. doi: 10.17816/RCF568121 EDN: TPOXSM
- Kozlovsky N, Matar MA, Kaplan Z, et al. Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int J Neuropsychopharmacol. 2007;10(6):741–758. doi: 10.1017/S1461145707007560
- Zhang L, Deng L, Ma C, et al. Brain-derived neurotrophic factor delivered intranasally relieves post-traumatic stress disorder symptoms caused by a single prolonged stress in rats. Neuropsychobiology. 2023;82(1):40–50. doi: 10.1159/000528755 EDN: BOHPXG
- Imbe H, Iwai-Liao Y, Senba E. Stress-induced hyperalgesia: animal models and putative mechanisms. Front Biosci. 2006; 11(3):2179–2192. doi: 10.2741/1960
- Constandil L, Aguilera R, Goich M, et al. Involvement of spinal cord BDNF in the generation and maintenance of chronic neuropathic pain in rats. Brain Res Bull. 2011;86(5–6):454–459. doi: 10.1016/J.BRAINRESBULL.2011.08.008
- Dai S, Ma Z. BDNF-trkB-KCC2-GABA pathway may be related to chronic stress-induced hyperalgesia at both the spinal and supraspinal level. Med Hypotheses. 2014;83(6):772–774. doi: 10.1016/J.MEHY.2014.10.008 EDN: VYTCLT
- Smith PA. BDNF in neuropathic pain; the culprit that cannot be apprehended. Neuroscience. 2024;543:49–64. doi: 10.1016/J.NEUROSCIENCE.2024.02.020 EDN: JSLXIQ
- Belokoskova SG, Krytskaya DV, Beznin GV, et al. 1-Desamino-8-D-arginin-vasopressin, DDAVP, increases the content of brain-derived neurotrophic factor (BDNF) in blood plasma of rats in model of post-traumatic stress disorder. Medical Academic Journal. 2020;20(4):27–34. doi: 10.17816/MAJ46393 EDN: WPADRT
- Zhou A-W, Li W-X, et al. Facilitation of AVP(4–8) on gene expression of BDNF and NGF in rat brain. Peptides. 1997;18(8):1179–1187. doi: 10.1016/S0196–9781(97)00184–8 EDN: AIPBRX
- Marshall AD. Posttraumatic stress disorder and partner-specific social cognition: a pilot study of sex differences in the impact of arginine vasopressin. Biol Psychol. 2013;93(2):296–303. doi: 10.1016/J.BIOPSYCHO.2013.02.014 EDN: RQYQQZ
- Tsikunov SG. Neurobiology of vital stress. New models of mental trauma and posttraumatic stress disorder. Reviews on Clinical Pharmacology and Drug Therapy. 2015;13(S1):187–188. (In Russ.)
- Tsikunov SG, Pshenichnaya AG, Klyueva NN, et al. Vital stress causes long-lasting behavioral disorders and lipid metabolism deviations in female rats. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(4):32–41. doi: 10.17816/RCF14432-41 EDN: XHVWOH
- Aydin S, Demir T, Oztürk Y, Başer KH. Analgesic activity of Nepeta italica L. Phytother Res. 1999;13(1):20–23. doi: 10.1002/(SICI)1099-1573(199902)13:1<20::AID-PTR380>3.0.CO;2-J
- Chajka AV, Cheretaev IV, Khusainov DR. Methods of experimental pre-clinical testing of analgesic effect of various factors on laboratory rats and mice. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2015;1(1):161–173. (In Russ.) EDN: VBOJXV
- Gmiro VE, Serdyuk SE. Comparative study of analgesic effect of N-decyltropine (IEM-1556), adenosine and mecamylamine. Russian Journal of Physiology. 2017;103(10):1106–1113. EDN: ZIXHBP.
- Mironov AN, editor. Guidelines for conducting preclinical studies of drugs. Part 1. Moscow: Grif i K; 2012. 944 p. (In Russ.) EDN: SDEWMP
- Smith MA, French AM. Age-related differences in sensitivity to the antinociceptive effects of kappa opioids in adult male rats. Psychopharmacology. 2002;162(3):255–264. doi: 10.1007/S00213-002-1102-6 EDN: BDVOWN
- Jain D, Bansal MK, Dalvi R, et al. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med. 2014;12(1):35–41. doi: 10.1016/S2095-4964(14)60001-7
- Zubov AS, Ivleva IS, Pestereva NS, et al. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology. 2022;239(9):2787–2798. doi: 10.1007/S00213-022-06159-9 EDN: TXERSK
- Obata H. Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci. 2017;18(11):2483. doi: 10.3390/IJMS18112483 EDN: SXVUZC
- Manning M, Misicka A, Olma A, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24(4):609–628. doi: 10.1111/J.1365–2826.2012.02303.X EDN: PGHDTJ
- Bradesi S, Martinez V, Lao L, et al. Involvement of vasopressin 3 receptors in chronic psychological stress-induced visceral hyperalgesia in rats. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G302–G309. doi: 10.1152/AJPGI.90557.2008
- Angelucci F, Aloe L, Vasquez PJ, Mathé AA. Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in animal model of depression. Neuroreport. 2000;11(6):1369–1373. doi: 10.1097/00001756-200004270-00044
- Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48(1–2):42–51. doi: 10.3109/07853890.2015.1131327 EDN: WVGNYD
- Sosanya NM, Garza TH, Stacey W, et al. Involvement of brain-derived neurotrophic factor (BDNF) in chronic intermittent stress-induced enhanced mechanical allodynia in a rat model of burn pain. BMC Neurosci. 2019;20:17. doi: 10.1186/S12868-019-0500-1 EDN: VGZWNL
- Shimizu T, Iwata S, Miyata A, et al. Delayed L-DOPA-induced hyperalgesia. Pharmacol Biochem Behav. 2006;85(3):643–647. doi: 10.1016/J.PBB.2006.10.020
