Hypolipidemic drugs inhibiting the proprotein convertase of subtilisin/kexin type 9 (PCSK9): monoclonal antibodies, antisense oligonucleotides, small interfering ribonucleic acids

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hypolipidemic therapy is one of the essential components for the management of patients with cardiovascular diseases (CVD). In this regard, the main task of modern research is to find new targets for creating additional effective groups of hypolipidemic drugs. In 2003, canadian and french research groups led by N. Seidah and M. Abifadel discovered a new enzyme – proprotein convertase subtilisin/kexin type 9 (PCSK9), which later turned out to play an important role in lipid metabolism. The main mechanism of action of PCSK9 is to regulate the density of low-density lipoprotein receptors (LDLR) in the cell membrane of hepatocytes. Increased activity of PCSK9 significantly accelerates the degradation of LDL and leads to an increase in the concentration of atherogenic classes of lipoproteins-low-density lipoproteins (LDL). In contrast, reduced PCSK9 activity is accompanied by a decrease in LDL concentrations and a reduced risk of developing atherosclerosis and CVD. The second of the recently discovered and less studied mechanism of PCSK9 protearogenic action is an increase in inflammatory processes in the atherosclerotic plaque. Given this adverse contribution of PCSK9 to the development and progression of atherosclerosis and CVD, the main task of the researchers was to develop drugs that inhibit THIS enzyme. To date, several new groups of drugs have been developed that target the stages of biosynthesis and the function of PCSK9. In this article, we will focus in detail on discussing the mechanisms of action and effectiveness of the following groups of hypolipidemic drugs: anti-PCSK9 monoclonal antibodies (alirocumab, evolocumab), small interfering ribonucleic acids (incliciran), and antisense nucleotides.

Full Text

Restricted Access

About the authors

Aleksey M. Chaulin

Samara State Medical University; Samara Regional Cardiology Dispensary

Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
SPIN-code: 1107-0875

post-graduate student; MD, Doctor

Russian Federation, 89 Chapaevskaya str., Samara, 443099; Samara

References

  1. Chaulin AM, Grigorieva YV, Suvorova GN, Duplyakov DV. Methods of modeling of atherosclerosis in rabbits. Modern Problems of Science and Education. 2020;(5). (In Russ). Available from: http://www.science-education.ru/ru/article/view?id=30101. Cited: 2021 Feb 23.
  2. Chaulin AM, Karslyan LS, Grigoriyeva EV, et al. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019;59(11):66–75. (In Russ.) doi: 10.18087/cardio.2019.11.n414
  3. Chaulin AM, Duplyakov DV. Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1. Journal of Clinical Practice. 2020;11(3):75–84. (In Russ.) doi: 10.17816/clinpract34284
  4. Gasanov MZ, Batiushin MM, Terentev VP. Professor A.I. Ignatowski a founder of the theory of atherosclerosis. The Russian Archives of Internal Medicine. 2017;7(6):407–414. (In Russ.) doi: 10.20514/2226-6704-2017-7-6-407-414
  5. Kukharchuk VV. N.N. Anichkov (1885–1964). The Journal of Atherosclerosis and Dyslipidemias. 2010;1(1):58–60. (In Russ.)
  6. Susekov AV, Nikitin AE. The past and near future of statin therapy in Russia. Lechebnoye delo. 2018;(3):30–37. (In Russ.)
  7. Malay LN. Statins in the treatment and prevention of cardiovascular diseases: repetition of the past and optimism for the future. Rational Pharmacotherapy in Cardiology. 2014; 10(5):513–524. (In Russ). doi: 10.20996/1819-6446-2014-10-5-513-524
  8. Sergienko IV. The story of statins, The Journal of Atherosclerosis and Dyslipidemias. 2011;(1):57–66. (In Russ.)
  9. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol. 2004;44(3): 720–732. doi: 10.1016/j.jacc.2004.07.001
  10. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333(20):1301–1307. doi: 10.1056/NEJM199511163332001
  11. Haria M, McTavish D. Pravastatin. A reappraisal of its pharmacological properties and clinical effectiveness in the management of coronary heart disease. Drugs. 1997;53(2):299–336. doi: 10.2165/00003495-199753020-00008
  12. Ahsan F, Oliveri F, Goud HK, et al. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Cureus. 2020;12(9): e10446. doi: 10.7759/cureus.10446
  13. Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med. 2019;9(1):22. doi: 10.3390/jcm9010022
  14. Nguyen KA, Li L, Lu D, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74(9):1099–1109. doi: 10.1007/s00228-018-2482-9
  15. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci. USA. 2003;100(3):928–933. doi: 10.1073/pnas.0335507100
  16. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003;34(2):154–156. doi: 10.1038/ng1161
  17. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA. 2005;102(6): 2069–2074. doi: 10.1073/pnas.0409736102
  18. Tavori H, Fan D, Blakemore JL, et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation. 2013;127(24):2403–2413. doi: 10.1161/CIRCULATIONAHA.113.001592
  19. Abifadel M, Guerin M, Benjannet S, et al. Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis. 2012;223(2):394–400. DOI: 10.1016/j. atherosclerosis.2012.04.006
  20. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J. Med. 2006;354(12):1264–1272. doi: 10.1056/NEJMoa054013
  21. Scartezini M, Hubbart C, Whittall RA, et al. The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascular risk in healthy U.K. men. Clin Sci (Lond). 2007;113(11):435–441. doi: 10.1042/CS20070150
  22. Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. (Part 1). Cardiology: News, Opinions, Training. 2019;7(2):45–57. (In Russ.) doi: 10.24411/2309-1908-2019-12005
  23. Tóth Š, Fedačko J, Pekárová T, et al. Elevated Circulating PCSK9 Concentrations Predict Subclinical Atherosclerotic Changes in Low Risk Obese and Non-Obese Patients. Cardiol Ther. 2017;6(2): 281–289. doi: 10.1007/s40119-017-0092-8
  24. Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. (Part 2). Cardiology: News, Opinions, Training. 2019;7(4):24–35. (In Russ.) doi: 10.24411/2309-1908-2019-14004
  25. Chaulin AM, Mazaev AYu, Aleksandrov AG. The role of proprotein convertase subtilisin/kexin of type 9 (PCSK-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research Journal. 2019. 4–1(82):124–126. (In Russ.) doi: 10.23670/IRJ.2019.82.4.025
  26. Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA. 2009;106(24):9820–9825. doi: 10.1073/pnas.0903849106
  27. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–1499. doi: 10.1056/NEJMoa1501031
  28. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–1509. doi: 10.1056/NEJMoa1500858
  29. Mayor S. PCSK9 inhibitors reduce cardiovascular events, preliminary data show. BMJ. 2015;350: h1508. DOI: 10.1136/ bmj.h1508
  30. Navarese EP, Kolodziejczak M, Schulze V, et al. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 Antibodies in Adults with Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann Intern Med. 2015;163(1):40–51. doi: 10.7326/M14-2957
  31. Cainzos-Achirica M, Martin SS, Cornell JE, et al. PCSK9 Inhibitors: A New Era in Lipid-Lowering Treatment? Ann Intern Med. 2015;163(1):64–65. doi: 10.7326/M15-0920
  32. Schmidt AF, Pearce LS, Wilkins JT, et al. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4(4): CD011748. doi: 10.1002/14651858.CD011748.pub2
  33. Schmidt AF, Carter JL, Pearce LS, et al. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;10: CD011748. doi: 10.1002/14651858.CD011748.pub3
  34. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713–1722. doi: 10.1056/NEJMoa1615664
  35. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097–2107. doi: 10.1056/NEJMoa1801174
  36. Farnier M, Colhoun HM, Sasiela WJ, et al. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1 to 2 years. J Clin Lipidol. 2017;11(4):986–997. doi: 10.1016/j.jacl.2017.05.016
  37. Arrieta A, Page TF, Veledar E, Nasir K. Economic Evaluation of PCSK9 Inhibitors in Reducing Cardiovascular Risk from Health System and Private Payer Perspectives. PLoS One. 2017;12(1): e0169761. doi: 10.1371/journal.pone.0169761
  38. Fire A, Xu S, Montgomery MK, Kostas SA, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi: 10.1038/35888
  39. webcitation.org [internet]. Fire AZ, Mello CC. The Nobel Prize in Physiology or Medicine 2006. URL: https://www.webcitation.org/61CfnnPLi?url=http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html Cited: 2021 Feb 21.
  40. Bernards R. Exploring the uses of RNAi – gene knockdown and the Nobel Prize. N Engl J Med. 2006;355(23):2391–2393. doi: 10.1056/NEJMp068242
  41. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035
  42. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911): 60–68. doi: 10.1016/S0140-6736(13)61914-5
  43. Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–16961. doi: 10.1021/ja505986a
  44. Khvorova A. Oligonucleotide Therapeutics – A New Class of Cholesterol-Lowering Drugs. N Engl J Med. 2017;376(1):4–7. doi: 10.1056/NEJMp1614154
  45. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med. 2017;376(15):1430–1440. doi: 10.1056/NEJMoa1615758
  46. Ray KK, Stoekenbroek RM, Kallend D, et al. Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins: Prespecified Secondary End Points in ORION1. Circulation. 2018;138(13): 1304–1316. doi: 10.1161/CIRCULATIONAHA.118.034710
  47. Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50:259–293. doi: 10.1146/annurev.pharmtox.010909.105654
  48. Graham MJ, Lemonidis KM, Whipple CP, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res. 2007;48(4):763–767. doi: 10.1194/jlr.C600025-JLR200
  49. Gupta N, Fisker N, Asselin MC, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010;5(5): e10682. doi: 10.1371/journal.pone.0010682
  50. Lindholm MW, Elmén J, Fisker N, et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther. 2012;20(2):376–381. doi: 10.1038/mt.2011.260
  51. van Poelgeest EP, Hodges MR, Moerland M, et al. Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial. Br J Clin Pharmacol. 2015;80(6):1350–1361. doi: 10.1111/bcp.12738
  52. van Poelgeest EP, Swart RM, Betjes MG, et al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am J Kidney Dis. 2013;62(4):796–800. doi: 10.1053/j.ajkd.2013.02.359

Copyright (c) 2021 Chaulin A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies