Behavioral analysis of anxiolytic action of phenazepam in conditions of an acute psychogenic stress (predator presentation) in Danio rerio

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We studied the effect of benzodiazepine anxiolytic phenazepam after the predator presentation to Danio rerio. The test of novelty was used: the fish was placed first in a beaker with a dissolved pharmacological substance (or H2O) and then into a novel tank for 6 min, where the trajectory, the path length, the number of movements to the upper part of the novel tank, the number and time of the pattern of “freezing” were measured. It is shown that, in response to the novelty of tank, the fish are reacted by submerging to the bottom, increasing the frizing, and reducing the number of movements to the upper half of the novel tank. After phenazepam administration, the fish were not only in the lower, but also in the upper part of the novel tank. The average path length did not change significantly in the range of doses used. The number and time of the frizing, as well as the time spent in the lower part of the novel tank, decreased more than 2 times compared to the control group of animals and showed a dose-dependent effect. The number of movements to the upper part of the novel tank for the experiment increased significantly from 1 in the control to 57 after phenazepam in a dose of 1 mg/l. At the same time, the number of movements of fish to the upper part of the novel tank significantly increased more than 2 times from 3th min of the experiment with the use of phenazepam in a dose of 1 mg/l. Predator presentation (Hypsophrys nicaraguensis) caused an increase in the number of freezing (temporary immobilization) and a decrease in the length of the trajectory of movement in the novel tank as compared with the Danio rerio control group. Phenazapam at a dose of 1 mg/l removed the effects of a predator, while exhibiting a typical effect: the number of movements to the upper part of the tank during the experiment significantly increased to 30; the time at the bottom of the tank was halved. It was concluded that the novelty stress test and the test with a predator are highly sensitive for studying anxiety-phobic reactions in Danio rerio.

Full Text

Restricted Access

About the authors

Andrei A. Lebedev

Institute of Experimental Medicine

Author for correspondence.
Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

Dr. Biol. Sci. (Pharmacology), Professor

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Aleksandr S. Devyashin

Institute of Experimental Medicine

Email: alexsanta93@mail.ru
SPIN-code: 5799-5470

Post-graduate Fellow

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Aleksandra A. Blazhenko

Institute of Experimental Medicine

Email: alexandrablazhenko@gmail.com
SPIN-code: 8762-3604

Post-graduate Fellow

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Sergei V. Kazakov

Institute of Experimental Medicine

Email: svkazakov@mail.ru

Post-graduate Fellow

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Viktor A. Lebedev

Institute of Experimental Medicine

Email: vitya-lebedev-57@mail.ru

Cand. Sci. (Med.)

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Eugenii R. Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

Cand. Sci. (Med.)

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

Petr D. Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Med. Sci. (Pharmacology), Professor

Russian Federation, 12 Acad. Pavlov str., Saint Petersburg, 197376

References

  1. Devyashin AS, Blazhenko AA, Lebedev VA, et al. Assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with diazepam as an example in Danio rerio. Reviews of Clinical Pharmacology and Drug Therapy. 2020;18(1):43–49. (In Russ.) doi: 10.17816/RCF18143-49
  2. Lebedev VA, Lebedev AA, Bychkov YeR, Shabanov PD. Probability of using the behavioral responses of Danio rerio in assessment of dose-dependent effects of phenazepam. Laboratornyye Zhivotnyye Dlya Nauchnykh Issledovaniy. 2018;(1):12–21. (In Russ.) doi: 10.29296/2618723X-2018-01-02
  3. Shabanov PD, Lebedev VA, Lebedev AA, Bychkov YeR. Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. Reviews of Clinical Pharmacology and Drug Therapy. 2017;15(3):57–63. doi: 10.17816/RCF15357-63
  4. Barcellos LJG, Koakoski G, Da Rosa JGS, et al. Chemical communication of predation risk in zebrafish does not depend on cortisol increase. Sci Rep. 2014;4:5076. doi: 10.1038/srep05076
  5. Bass SLS, Gerlai R. Zebrafish (Danio rerio) responds differentially to stimulus fish: The effects of sympatric and allopatric predators and harmless fish. Behav Brain Res. 2008;186(1):107–117. doi: 10.1016/j.bbr.2007.07.037
  6. Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a Zebrafish model of anxiety. Pharmacol Biochem Behav. 2009;94(1):75–80 doi: 10.1016/j.pbb.2009.07.009
  7. Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38(3):456–469. doi: 10.3758/bf03192800
  8. Bretaud S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience. 2007; 146(3):1109–1116. doi: 10.1016/j.neuroscience.2006.12.073
  9. O’Connor CM, Reddon AR, Odetunde A, et al. Social cichlid fish change behavior in response to a visual predator stimulus, but not the odour of damaged conspecifics. Behav Processes. 2015;121: 21–29 doi: 10.1016/j.beproc.2015.10.002
  10. Egan RJ, Bergner CL, Hart PC, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205(1):38–44. doi: 10.1016/j.bbr.2009.06.022
  11. Gerlai R. Event recording and video-tracking: towards the development of high-throughput Danio rerio screens. In: Noldus LPJJ, Grieco F, Loijens LWS, Zimmerman PH, eds. Measuring Behavior 2005. Proceeding of the 5th International Conference on Methods and Techniques in Behavioral Research. Wageningen, The Netherlands, 30 August-2 September, 2005. Wageningen: Noldus Information Technology; 2005.
  12. Gerlai R, Lee V, Blaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav. 2006;85(4):752–761. doi: 10.1016/j.pbb.2006.11.010
  13. Kalluef AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63–75. doi: 10.1016/j.tips.2013.12.002
  14. Levin, E.D., Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol. 2004;26(6):731–735. doi: 10.1016/j.ntt.2004.06.010
  15. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One. 2017;12(8): e0181010. doi: 10.1371/journal.pone.0181010
  16. Lopez-Patino MA, Cabral H, Zhdanova IV. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 2008;93(1–2): 160–171. doi: 10.1016/j.physbeh.2007.08.013
  17. Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006;39(3):262–274. doi: 10.1016/j.ymeth.2005.12.007
  18. Sackerman J. zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol. 2010;23(1):43–61.
  19. Stewart A, Kalueff AV. The developing utility of zebrafish in modeling neurobehavioral disorders. Int J Comp Psychol. 2010;23(1): 104–120. doi: 10.1016/j.pnpbp.2010.11.035
  20. Wong K, Elegante M, Bartels B. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 2010;208(2):450–457. doi: 10.1016/j.bbr.2009.12.023

Copyright (c) 2021 Lebedev A.A., Devyashin A.S., Blazhenko A.A., Kazakov S.V., Lebedev V.A., Bychkov E.R., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies