Application of natural and artificial hypoxia in sport training

Abstract


The purpose of this review is brief description of the altitude and hypoxia application principles as added tools in sports training. The research directions are determined which require activation of applied developments for the improvement of sports training technologies using hypoxia conditions. Also in the review emphasized the haemoproteins role at the adaptation to hypoxia and hypoxia’s effects on CNS fatigue.

Aleksandr Sergeyevich Radchenko

St. Petersburg Research Institute for Physical Culture

Doctor Biol. Sci., Head of the Center

  1. Радченко, А. С., Королев, Ю. Н., Голубев, В. Н. Воздействие нормобарической гипоксической тренировки на системное кровообращение // ХХI Съезд Физиологического общества им. И. П. Павлова. Тезисы докладов. — М. — Калуга: Типография ООО «БЭСТ-принт». — 2010. — С. 511.
  2. Amann M., Eldridge M. W., Lovering A. T. et al. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue // J. Physiol. — 2006. — Vol. 575. — P. 937–952.
  3. Amann M., Romer L. M., Subudhi A. W., Pegelov D. F., Dempsey J. A. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans // J. Physiol. — 2007. — Vol. 581. — P. 389–403.
  4. Amann M., Calbet J. A. L. Convective oxygen transport and fatigue // J. Appl. Physiol. — 2008. — Vol. 104, N 3. — P. 861–870.
  5. Anchisi S., Moia C., Ferretti G. Oxygen delivery and oxygen return in humans exercising in acute normobaric hypoxia // Pflugers Arch. — 2001. — Vol. 442(3). — P. 443–450.
  6. Bailey D. M., Davies B. Physiological implications of altitude training for endurance performance at sea level: a review // Br. Journal Sports Med. — 1997. — Vol. 31. — P. 183–190.
  7. Brugniaux J. V., Schmitt L., Robach P. et al. Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners // J. Appl. Physiol. — 2006. — Vol. 100, N 1. — P. 203–211.
  8. Chapman R. F., Stray-Gundersen J., Levine B. D. Individual variation in response to altitude training // J. Appl. Physiol. — 1998. — Vol. 85, N 4. — P. 1448–1456.
  9. Cossins A. Berenbrink M. Myoglobin’s new clothes // Nature — 2008. — Vol. 454. — P. 416–417.
  10. Dufour S. P., Ponsot E., Zoll J. et al. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity // J. Appl. Physiol. — 2006. — Vol. 100. — P. 1238–1248.
  11. Duncker D. J., Bache R. J. Regulation of Coronary Blood Flow During Exercise // Physiol. Rev. — 2008. — Vol. 88. — P. 1009–1086.
  12. Gauthier K. M. Hypoxia-induced vascular smooth muscle relaxation: increased ATP-sensitive K+ efflux or decreased voltage-sensitive Ca 2+ influx? // Am. J. Physiol. Heart Circ. Physiol. — 2006. — Vol. 291. — P. H24–H25.
  13. Ge R. L., Witkowski S., Zhang Y. et al. Determinants of erythropoietin release in response to short-term hypobaric hypoxia // J. Appl. Physiol. — 2002. — Vol. 92, N 6. — P. 2361–2367.
  14. González-Alonso J., Olsen D. B, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP // Circ. Res. — 2002. — Vol. 91. — P. 1046–1055.
  15. Gonzalez-Alonso J., Dalsgaard M. K., Osada T. et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans // J. Physiol. — 2004. — Vol. 557. — P. 331–342.
  16. Gonzalez-Alonso J., Mortensen S. P., Dawson E. A. et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin // J. Physiol. — 2006. — Vol. 572. — P. 295–305.
  17. Gonzalez-Alonso J. ATP: a double-edged signalling molecule regulating the flow of oxygen // J. Physiol. — 2008. — Vol. 586, N 17. — P. 4033–4034.
  18. Goodall S., Ross E. Z., Romer L. M. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions // J. Appl. Physiol. — 2010. — Vol. 109, N 6. — P. 1842–1851.
  19. Goodal S., Gonzales-Alonso J., Ali L. et al. Supraspinal fatigue after normoxic and hypoxic exercise in humans // J. Physiol. — 2012. — Vol. 590. — P. 2767–2782.
  20. Gore C. J., Rodriguez F. A., Truijens M. J. et al. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4 000–5 500 m) // J. Appl. Physiol. — 2006. — Vol. 101. — P. 1386–1393.
  21. Gore C. J., Clark S. A., Saunders P. U. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure // Med. Sci. Sports Exerc. — 2007. — Vol. 39, N 9. — P. 1600–1609.
  22. Gore C. J., Hopkins W. G. Counterpoint: positive effects of intermittent hypoxia (live high: train low) on exercise performance are not mediated primarily by augmented red cell volume // J. Appl. Physiol. — 2005. — Vol. 99, N 5. — P. 2055–2057; discussion 7–8.
  23. Gore C. J., Hahn A. G., Aughey R. J. et al. Live high: train low increases muscle buffer capacity and submaximal cycling efficiency // Acta Physiol. Scand. — 2001. — Vol. 173, N 3. — P. 275–286.
  24. Green H., MacDougall J., Tarnopolsky M. et al. Downregulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia // J. Appl. Physiol. — 1999. — Vol. 86, N 5. — P. 1745–1748.
  25. Gros G., Wittenberg B. A., Jue T. Myoglobin's old and new clothes: from molecular structure to function in living cells // Journal Exp. Biol. — 2010. — Vol. 213. — P. 2713–2725.
  26. Hahn A. G, Gore C. J. The effect of altitude on cycling performance: a challenge to traditional concepts // Sports. Med. — 2001. — Vol. 31, N 7. — P. 533–557.
  27. Herrera G. M., Walker B. R. Involvement of L-type calcium channels in hypoxic relaxation of vascular smooth muscle // J. Vasc. Res. — 1998. — Vol. 35. — P. 265–273.
  28. Issurin V. Altitude training: an up-to-date approach and implementation in practice // Sporto Mokslas. — 2007. — Vol. 1, N 47. — P. 12–19.
  29. Jensen F. B. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow // J. Exp. Biol. — 2009. — Vol. 212. — P. 3387–3393.
  30. Kanatous S. B., Garry D. J. Gene deletional strategies reveal novel physiological roles for myoglobin in striated muscle // Respir. Physiol. Neurobiol. — 2006. — Vol. 151. — P. 151–158.
  31. Kanatous S. B., Mammen P. P. A., Rosenberg P. B. et al. Hypoxia reprograms calcium signaling and regulates myoglobin expression // Am. J. Physiol. Cell Physiol. — 2009. — Vol. 296. — P. C393–C402.
  32. Kanatous S. B., Mammen P. P. A. Regulation of myoglobin expression // J. Exper. Biol. — 2010. — Vol. 213. — P. 2741–2747.
  33. Kayser B., Narici M., Binzoni T. et al. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass // J. Appl. Physiol. — 1994. — Vol. 76. — P. 634–640.
  34. Kooyman G. L., Ponganis P. J. The physiological basis of diving to depth: birds and mammals // Ann. Rev. Physiol. — 1998. — Vol. 60. — P. 19–32.
  35. Levine B. D., Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance // J. Appl. Physiol. — 1997. — Vol. 83. — P. 102–112.
  36. Levine B. D. Intermittent hypoxic training: fact and fancy // High Alt. Med. Biol. — 2002. — Vol. 3. — P. 177–193.
  37. Levine B. D., Stray-Gundersen J. Point: Positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume // J. Appl. Physiol. — 2005. — Vol. 99. — P. 2053–2055.
  38. Lin P. C., Kreutzer U., Thomas J. Myoglobin translational diffusion in rat myocardium and its Implication on intracellular oxygen transport // J. Physiol. — 2007. — Vol. 578. — P. 595–603.
  39. Mammen P. P. A., Shelton J. M., Ye Q. et al. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain // J. Histochem. Cytochem. — 2006. — Vol. 54, N 12. — P. 1349–1361.
  40. Melissa L., MacDougall J. D., Tarnopolsky M. A. et al. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions // Med. Sci. Sports Exerc. — 1997. — Vol. 29. — P. 238–243.
  41. Millet G. P., Roels B., Schmitt L. et al. Combining hypoxic methods for peak performance // Sports Med. — 2010. — Vol. 40. — P. 1–25.
  42. Millet G. Y., Muthalib M., Jubeau M. et al. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue // J. Appl. Physiol. — 2012. — Vol. 112, N 8. — P. 1335–1344.
  43. Møller K., Paulson O. B., Hornbein T. F. et al. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude // J. Cereb. Blood Flow Metab. — 2002. — Vol. 22. — P. 118–126.
  44. Ponsot E., Dufour S. P., Zoll J., et al. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle // J. Appl. Physiol. — 2006. — Vol. 100. — P. 1249–1257.
  45. Powell F. L., Garcia N. Physiological effects of intermittent hypoxia // High Alt. Med. Biol. — 2000. — Vol. 1. — P. 125–136.
  46. Rodriguez F. A., Truijens M. J., Townsend N. E. et al. Effects of four weeks of intermittent hypobaric hypoxia on sea level running and swimming performance // Med. Sci. Sports Exerc. — 2004. — Vol. 36, (Suppl. 5). — P. 338.
  47. Rusko H. K., Leppavuori A., Makela P. Living high-training low: a new approach to altitude training at sea level in athletes [abstract] // Med. Sci. Sports Exerc. — 1995. — Vol. 27 (Suppl. 5). — P. 6.
  48. Rusko H. K., Tikkanen H., Paavolainen L. et al. Effect of living in hypoxia and training in normoxia on sea level VO2max and red cell mass // Med. Sci. Sports Exerc. — 1999. — Vol. 31. — P. 86.
  49. Rusko H. K., Tikkanen H. O., Peltonen J. E. Oxygen manipulation as an ergogenic aid // Curr. Sports Med. Rep. — 2003. — Vol. 2. — P. 233–238.
  50. Rusko H. K., Tikkanen H., Peltonen J. E. Altitude and endurance training // J. Sports Sci. — 2004. — Vol. 22. — P. 928–944.
  51. Saunders P. U., Telford R. D., Pyne D. B. et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure // J. Appl. Physiol. — 2004. — Vol. 96. — P. 931–937.
  52. Schmidt W., Heinicke K., Rojas J. et al. Blood volume and hemoglobin mass in endurance athletes from moderate altitude // Med. Sci. Sports Exerc. — 2002. — Vol. 34. — P. 1934–1940.
  53. Schmitt L., Millet G., Robach P. et al. Influence of “living high–training low” on aerobic performance and economy of work in elite athletes // Eur. J. Appl. Physiol. — 2006. — Vol. 97. — P. 627–636.
  54. Stray-Gundersen J., Chapman R. F., Levine B. D. “Living high–training low” altitude training improves sea level performance in male and female elite runners // J. Appl. Physiol. — 2001. — Vol. 91. — P. 1113–1120.
  55. Subudhi A. W., Dimmen A. C., Roach R. C. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise // J. Appl. Physiol. — 2007. — Vol. 103. — P. 177–183.
  56. Subudhi A. W., Lorenz M. C., Fulco C. S., Roach R. C. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance // Am. J. Physiol. Heart Circ. Physiol. — 2008. — Vol. 294. — P. H164–171.
  57. Subudhi A. W., Miramon B. R., Granger M. E., Roach R. C. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia // J. Appl. Physiol. — 2009. — Vol. 106. — P. 1153–1158.
  58. Terrados N., Jansson E., Sylven C. et al. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? // J. Appl. Physiol. — 1990. — Vol. 68. — P. 2369–2372.
  59. Verges S. Rupp T., Jubeau M. et al. Cerebral perturbations during exercise in hypoxia // Am. J. Physiol. — 2012. — Vol. 32, N. 8. — P. R903–R916.
  60. Vogiatzis I., Louvaris Z., Habazettl H. et al. Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes // J. Physiol. — 2011. — Vol. 589. — P. 4027–4039.
  61. Wang J. S., Wu M. H., Mao T. Y. et al. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans // J. Appl. Physiol. — 2010. — Vol. 109, N 1. — P. 219–229.
  62. Wilber R. L. Current trends in altitude training // Sports Med. — 2001. — Vol. 31. — P. 249–265.
  63. Wilber R. L. Application of altitude/hypoxic training by elite athletes // Med. Sci. Sports Exerc. — 2007. — Vol. 39. — P. 1610–1624.
  64. Wilber R. L., Stray-Gundersen J., Levine B. D. Effect of hypoxic “dose” on Physiological response and sea-level performance // Med. Sci. Sports Exerc. — 2007. — Vol. 39, N 9. — P. 1590–1599.
  65. Witkowski S., Karlsen T., Resaland G. et al. Optimal altitude for “living high-training low” // Med. Sci. Sports Exerc. — 2002. — Vol. 33 (Suppl. 5). — P. S292.
  66. Wittenberg J. B. On optima: the case of myoglobin-facilitated oxygen diffusion // Gene. — 2007. — Vol. 398. — P. 156–161.
  67. Wittenberg B. A. Both hypoxia and work are required to enhance expression of myoglobin in skeletal muscle. Focus on “Hypoxia reprograms calcium signaling and regulates myoglobin expression” // Am. J. Physiol. Cell Physiol. — 2009. — Vol. 296. — C390–C392.
  68. Woorons X., Mollard P., Pichon A. et al. Moderate exercise in hypoxia induces a greater arterial desaturation in trained then untrained men // Scand. J. Med. Sci. Sports. — 2007. — Vol. 17. — P. 431–436.
  69. Zoll J., Ponsot E., Dufour S. P. et al. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts // J. Appl. Physiol. — 2006. — Vol. 100. — P. 1258–1266.

Views

Abstract - 431

PDF (Russian) - 329

Cited-By


PlumX


Copyright (c) 2013 Radchenko A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies