Antioxidant and prooxidant systems in patients with ischemic insult

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The literature review presents current information on the role of oxidative stress in the pathogenesis of cerebral ischemia / reperfusion. In patients with ischemic stroke, activation of enzymatic and non-enzymatic links of antioxidant defense in the form of an increase in the blood and cerebrospinal fluid of the activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, the content of glutathione reflects the presence of compensatory reserves, is a favorable factor for the restoration of brain functions. An increase in the content of markers of lipid peroxidation in various biological environments in patients with strokes, mainly malondialdehyde, even in combination with an increase in the content of markers of antioxidant protection, indicates its insufficiency and an unfavorable prognosis of the disease. An increase in the content of markers of lipid peroxidation, mainly malondialdehyde, in patients with strokes in various biological environments, even in combination with an increase content in markers of antioxidant protection, indicates its insufficiency, an unfavorable prognosis of the disease. The presence of affective disorders and the persistence of residual manifestations of ischemic stroke may be due to permanent oxidative stress. When choosing a therapy aimed at increasing the activity of antioxidant protection and reducing the toxic effect of prooxidants, one should take into account the severity and dynamics of metabolic disorders. In the presence of data reflecting insufficient activity of antioxidant systems in combination with increased activity of prooxidant systems, the appointment of drugs that reduce the severity of oxidative stress in the early stages of stroke is indicated. Therapy including antioxidant drugs is also indicated in patients with post-stroke affective disorders and with residual symptoms of stroke.

Full Text

Restricted Access

About the authors

Svetlana G. Belokoskova

Institute of Experimental Medicine

Author for correspondence.
Email: belokoskova.sg@iemspb.ru
ORCID iD: 0000-0002-0552-4810

Dr. Sci. (Med.)

Russian Federation, 12, Academika Pavlova str., 197376, Saint Petersburg

Sergey G. Tsikunov

Institute of Experimental Medicine

Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940

Dr. Sci. (Med), Professor

Russian Federation, 12, Academika Pavlova str., 197376, Saint Petersburg

References

  1. Arushanyan EB, Naumov SS. Oxidative stress as a problem of psychopharmacology. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(4):297–311. (In Russ.) doi: 10.17816/RCF184297-311
  2. Bardymov VV, Shprah VV, Kolesnichenko LS, Sergeyeva MP. State of antioxidant system in patients with ischemic stroke. Byulleten’ vostochno-sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2005;(7):7–9. (In Russ.)
  3. Belyakov ES, Mel’nichuk EYu. Rol’ oksidativnogo stressa v razvitii disfunktsii ehndoteliya. Molodoi uchenyi. 2020;(3):95–96. (In Russ.)
  4. Belokoskova SG, Tsikunov SG. Vazopressin v regulyatsii funktsii mozga v norme i pri patologii. Saint Petersburg: Art-Еkspress, 2020. 256 p. (In Russ.)
  5. Boldyrev AA, Kulebyakin KY, Arzumanyan ES, Berezov TT. Novel mechanism of regulation of brain plasticity. Neurochemical Journal. 2011;28(4):340–344. (In Russ.) doi: 10.1134/S1819712411040052
  6. Durova MV, Reichert LI, Surzhenko AA. Features of the changes of lipid peroxidation and platelet membrane structures in acute ischemic stroke. Tyumen medical journal. 2016;18(2):45–49. (In Russ.)
  7. Lutsky MA, Zemskov AM, Razuvaeva VV, et al. Oxidative stress as an indicator of metabolic disorders in the pathogenesis of cerebral stroke. S.S. Korsakov journal of neurology and psychiatry. 2016;116(8–2):24–29. (In Russ.) doi: 10.17116/jnevro20161168224-29
  8. Novikov VE, Levchenkova OS, Ivantsova EN, Vorobieva VV. Mitochondrial dysfunctions and antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(4):31–42. (In Russ.) doi: 10.17816/RCF17431-42
  9. Stepanova JI, Garmaza YuM, Slobozhanina EI, et al. Blood antioxidant status at acute and chronic disorder of cerebral circulation. Medical academic journal. 2014;14(4):41–48. (In Russ.)
  10. Trofimova SA, Balunov OA, Dubinina EE. Perspektivy lecheniya bol’nykh, perenesshikh ishemicheskii insul’t: mesto i rol’ tsitoflavina. Neurology and neurosurgery. Eastern Europe. 2011;(3):40–48. (In Russ.)
  11. Firstova NV, Levashova OA, Zolkornyayev IG, Zavarzina VA. Freeradical processes in experimental cerebral ischemia. Izvestiya Penzenskogo gosudarstvennogo pedagogicheskogo universiteta im. V.G. Belinskogo. 2008;(14):59–62. (In Russ.)
  12. Shabanov PD, Zarubina IV. Hypoxia and antihypoxants, focus on brain injury. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):7–16. (In Russ.) doi: 10.17816/RCF1717-16
  13. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–470. doi: 10.1111/j.1747-4949.2009.00387.x
  14. Armogida M, Nisticò R, Mercuri NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol. 2012;166(4):1211–1224. doi: 10.1111/j.1476-5381.2012.01912.x
  15. Castillo J, Rama R, Davalos A. Nitric oxide-related brain damage in acute ischemic stroke. Stroke. 2000;31(4):852–857. doi: 10.1161/01.str.31.4.852
  16. Chamorro Á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–881. doi: 10.1016/S1474-4422(16)00114-9
  17. Cherubini A, Ruggiero C, Polidori MC, et al. Potential markers of oxidative stress in stroke. Free Radic Biol Med. 2005;39(7):841–852. doi: 10.1016/j.freeradbiomed.2005.06.025
  18. Cherubini A. Antioxidant profile and early outcome in stroke patients. Stroke. 2000;31(10):2295–2300. doi: 10.1161/01.str.31.10.2295
  19. Cojocaru IM, Cojocaru M, Sapira V, et al. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med. 2013;51(2):97–106.
  20. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi: 10.1093/eurheartj/ehr304
  21. Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020;34:101550. doi: 10.1016/j.redox.2020.101550
  22. Gebicka L, Krych-Madej J. The role of catalases in the prevention/promotion of oxidative stress. J Inorg Biochem. 2019;197:110699. doi: 10.1016/j.jinorgbio.2019.110699
  23. Kondolot M, Ozmert EN, Ascı A, et al. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. Environ Toxicol Pharmacol. 2016;43:149–158. doi: 10.1016/j.etap.2016.03.006
  24. Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke. 2001;32(11):2712–2716. doi: 10.1161/hs1101.098653
  25. Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013;34(6):313–319. doi: 10.1016/j.tips.2013.03.007
  26. Lin SP, Tu C, Huang W, et al. Acute-phase serum superoxide dismutase level as a predictive biomarker for stroke-associated infection. Int J Neurosci. 2020;130(2):186–192. doi: 10.1080/00207454.2019.1667790
  27. Lipton SA. Redox sensitivity of NMDA receptors. Methods Mol Biol. 1999;128:121–130. doi: 10.1385/1-59259-683-5:121
  28. Lithell H, Hansson L, Skoog I, et al. The Study on Cognition and Prognosis in the Elderly: principal results of a randomized doubleblind intervention trial. J Hypertens. 2003;21(5):875–886. doi: 10.1097/00004872-200305000-00011
  29. Liu Z, Cai Y, Zhang X, et al. High serum levels of malondialdehyde and antioxidant enzymes are associated with post-stroke anxiety. Neurol Sci. 2018;39(6):999–1007. doi: 10.1007/s10072-018-3287-4
  30. Liu Z, Zhu Z, Zhao J, et al. Malondialdehyde: A novel predictive biomarker for post-stroke depression. J Affect Disord. 2017;220:95–101. doi: 10.1016/j.jad.2017.05.023
  31. López-Neblina F, Toledo-Pereyra LH. Phosphoregulation of signal transduction pathways in ischemia and reperfusion. J Surg Res. 2006;134(2):292–299. doi: 10.1016/j.jss.2006.01.007
  32. Meza CA, La Favor JD, Kim DH, et al. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci. 2019;20(15):3775. doi: 10.3390/ijms20153775
  33. Milanlioglu A, Aslan M, Ozkol H, et al. Serum antioxidant enzymes activities and oxidative stress levels in patients with acute ischemic stroke: influence on neurological status and outcome. Wien Klin Wochenschr. 2016;128(5–6):169–174. doi: 10.1007/s00508-015-0742-6
  34. Munzel T, Keaney JF Jr. Are ACE inhibitors a ‘‘magic bullet’’ against oxidative stress? Circulation. 2001;104(13):1571–1574. doi: 10.1161/hc3801.095585
  35. Myint PK, Luben RN, Welch AA, et al. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European prospective investigation into cancer Norfolk prospective population study. Am J Clin Nutr. 2008;87(1):64–69. doi: 10.1093/ajcn/87.1.64
  36. Paspalj D, Nikic P, Savic M, et al. Redox status in acute ischemic stroke: correlation with clinical outcome. Mol Cell Biochem. 2015;406(1–2):75–81. doi: 10.1007/s11010-015-2425-z
  37. Polidori MC, Cherubini A, Stahl W, et al. Plasma carotenoid and malondialdehyde levels in ischemic stroke patients: relationship to early outcome. Free Radic Res. 2002;36(3):265–268. doi: 10.1080/10715760290019273
  38. Saeed SA, Shad KF, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007;182:1–10. doi: 10.1007/s00221-007-1050-9
  39. Samakova A, Gazova A, Sabova N, et al. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res. 2019;68(2): S131–S138. doi: 10.33549/physiolres.934345
  40. Sasaki T, Shimizu T, Koyama T, et al. Superoxide dismutase deficiency enhances superoxide levels in brain tissues during oxygenation and hypoxia-reoxygenation. J Neurosci Res. 2011;89(4):601–610. doi: 10.1002/jnr.22581
  41. Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–4911. doi: 10.1046/j.1432-1327.2000.01595.x
  42. Sharma SS, Gupta S. Neuroprotective effect of MnTMPyP, a superoxide dismutase/catalase mimetic in global cerebral ischemia is mediated through reduction of oxidative stress and DNA fragmentation. Eur J Pharmacol. 2007;561(1–3):72–79. doi: 10.1016/j.ejphar.2006.12.039
  43. Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2014;54(3):151–160. doi: 10.3164/jcbn.14-10
  44. Sun K, Fan J, Han J. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B. 2015;5(1):8–24. doi: 10.1016/j.apsb.2014.11.002
  45. Zimmermann C, Winnefeld K, Streck S, et al. Antioxidant status in acute stroke patients and patients at stroke risk. Eur Neurol. 2004;51(3):157–161. doi: 10.1159/000077662
  46. Žitňanová I, Šiarnik P, Kollár B, et al. Oxidative Stress Markers and Their Dynamic Changes in Patients after Acute Ischemic Stroke. Oxid Med Cell Longev. 2016;2016:9761697. doi: 10.1155/2016/9761697.

Copyright (c) 2021 Belokoskova S.G., Tsikunov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies