Цинк-зависимые механизмы репаративной регенерации: теоретические аспекты и трансляционные перспективы
- Авторы: Лебедева С.А.1, Галенко-Ярошевский П.А.2, Трофимов Б.А.3, Паршина Л.Н.3, Шелемех О.В.4, Сергеева А.В.5, Мурашко Г.Р.5, Бунятян Н.Д.6, Матеренчук М.Ю.7, Зеленская А.В.5, Галенко-Ярошевский П.А.5
-
Учреждения:
- Российский университет дружбы народов им. Патриса Лумумбы
- Клиника Екатерининская
- Иркутский институт химии им. А.Е. Фаворского Сибирского отделения РАН
- Ростовский государственный медицинский университет
- Кубанский государственный медицинский университет
- Научный центр экспертизы средств медицинского применения
- Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)
- Выпуск: Том 23, № 2 (2025)
- Страницы: 105-118
- Раздел: Научные обзоры
- Статья получена: 03.03.2025
- Статья одобрена: 19.06.2025
- Статья опубликована: 30.06.2025
- URL: https://journals.eco-vector.com/RCF/article/view/660184
- DOI: https://doi.org/10.17816/RCF660184
- EDN: https://elibrary.ru/VXXCDB
- ID: 660184
Цитировать
Полный текст



Аннотация
Цинк является важным компонентом более 10% протеома организма человека и кофактором почти 300 металлоэнзимов. Взаимодействие с цинком регулирует активность белков, влияя на многочисленные процессы в клетке, а удаление цинка из структуры фермента приводит к полной потере его энзиматической активности. В связи с этим цинк выступает как внутриклеточная сигнальная молекула на всех уровнях передачи сигнала, влияя на множество метаболических путей. Репаративная регенерация — это каскадный механизм восстановления клеток и тканей взамен погибших вследствие патологических процессов. Понимание молекулярных механизмов репаративной регенерации важно для поиска клинических стратегий, направленных на повышение способности тканей к восстановлению. Ключевым игроком в репаративной регенерации является цинк. Воздействие на цинк-зависимые сигнальные пути является перспективным подходом в экспериментальной фармакологии. Оригинальные отечественные комплексные соединения цинка с N-алкенилимидазолами зарекомендовали себя как эффективные средства фармакологической коррекции целого ряда патологических состояний, связанных с репаративной регенерацией. В настоящее время продемонстрировано их антигипоксическое, антиоксидантное, ранозаживляющее, противовоспалительное, антиульцерогенное и анальгезирующее действие. Безопасность и высокая биодоступность данных соединений открывают широкие трансляционные возможности. Заживление ран — сложный динамичный процесс, в который вовлечено множество типов клеток, в том числе иммунных. Они выделяют цитокины и факторы роста, которые способствуют усилению воспалительного процесса. Представляемый обзор дает современное понимание цинк-зависимых внутриклеточных и системных процессов и освещает возможные механизмы действия комплексных соединений цинка с точки зрения молекулярно-клеточных путей репаративной регенерации.
Ключевые слова
Полный текст

Об авторах
Светлана Анатольевна Лебедева
Российский университет дружбы народов им. Патриса Лумумбы
Email: Lebedeva502@yandex.ru
ORCID iD: 0000-0003-0325-6397
SPIN-код: 4031-4932
д-р биол. наук
Россия, МоскваПавел Александрович Галенко-Ярошевский
Клиника Екатерининская
Email: Pavelgalenko@bk.ru
ORCID iD: 0000-0002-6279-0242
Россия, Краснодар
Борис Александрович Трофимов
Иркутский институт химии им. А.Е. Фаворского Сибирского отделения РАН
Email: boris_trofimov@irioch.irk.ru
ORCID iD: 0000-0002-0430-3215
SPIN-код: 5179-9902
д-р хим. наук
Россия, ИркутскЛидия Никифоровна Паршина
Иркутский институт химии им. А.Е. Фаворского Сибирского отделения РАН
Email: parshina@irioch.irk.ru
ORCID iD: 0000-0002-5516-6214
SPIN-код: 8333-2047
д-р хим. наук
Россия, ИркутскОльга Владимировна Шелемех
Ростовский государственный медицинский университет
Email: lioli777@yandex.ru
ORCID iD: 0000-0003-3488-9971
Россия, Ростов-на-Дону
Алина Викторовна Сергеева
Кубанский государственный медицинский университет
Автор, ответственный за переписку.
Email: alina_sergeeva_v@mail.ru
ORCID iD: 0000-0003-4335-2156
SPIN-код: 1917-7035
Россия, Краснодар
Григорий Романович Мурашко
Кубанский государственный медицинский университет
Email: grihsanfeed@gmail.com
ORCID iD: 0009-0008-7023-6357
Россия, Краснодар
Наталья Дмитриевна Бунятян
Научный центр экспертизы средств медицинского применения
Email: ndbun@mail.ru
ORCID iD: 0000-0001-9466-1261
SPIN-код: 9853-1232
д-р фарм. наук
Россия, МоскваМария Юрьевна Матеренчук
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)
Email: mariamatter231@gmail.com
ORCID iD: 0000-0002-0711-4153
SPIN-код: 4360-1756
Россия, Москва
Анаит Владимировна Зеленская
Кубанский государственный медицинский университет
Email: anait_06@mail.ru
ORCID iD: 0000-0001-9512-2526
SPIN-код: 7646-3620
канд. мед. наук
Россия, КраснодарПавел Александрович Галенко-Ярошевский
Кубанский государственный медицинский университет
Email: Galenko.Yaroсhevsky@gmail.com
ORCID iD: 0000-0003-3190-1437
SPIN-код: 1575-6129
д-р мед. наук, чл.-корр. РАН
Россия, КраснодарСписок литературы
- Freeland-Graves JH, Sanjeevi N, Lee JJ. Global perspectives on trace element requirements. J Trace Elem Med Biol. 2015;31: 135–141. doi: 10.1016/j.jtemb.2014.04.006
- Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371–382. doi: 10.1177/0884533615570376
- Maret W. Zinc in cellular regulation: The nature and significance of “zinc signals.” Int J Mol Sci. 2017;18(11):2285. doi: 10.3390/ijms18112285
- Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci. 2017;18(6):1237. doi: 10.3390/ijms18061237
- Lin P-H, Sermersheim M, Li H, et al. Zinc in wound healing modulation. Nutrients. 2017;10(1):16. doi: 10.3390/nu10010016
- Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int J Mol Sci. 2016;17(3):336. doi: 10.3390/ijms17030336
- Duerr GD, Dewald D, Schmitz EJ, et al. Metallothioneins 1 and 2 modulate inflammation and support remodeling in ischemic cardiomyopathy in mice. Mediators Inflamm. 2016;2016:7174127. doi: 10.1155/2016/7174127
- Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res. 2018;183(1):22–31. doi: 10.1007/s12011-017-1119-7
- Maret W. Zinc in the biosciences. Metallomics. 2014;6(7):1174. doi: 10.1039/c4mt90021a
- Kocyła A, Adamczyk J, Krężel A. Interdependence of free zinc changes and protein complex assembly — insights into zinc signal regulation. Metallomics. 2018;10(1):120–131. doi: 10.1039/c7mt00301c
- Krężel A, Maret W. The biological inorganic chemistry of zinc ions. Arch Biochem Biophys. 2016;611:3–19. doi: 10.1016/j.abb.2016.04.010
- Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–784. doi: 10.1152/physrev.00035.2014
- Kambe T, Matsunaga M, Takeda T-a. Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int J Mol Sci. 2017;18(10):2179. doi: 10.3390/ijms18102179
- Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci. 2020;77(16): 3085–3102. doi: 10.1007/s00018-020-03473-3
- Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc transporters as potential therapeutic targets: An updated review. J Pharmacol Sci. 2022;148(2):221–228. doi: 10.1016/j.jphs.2021.11.007
- Hojyo S, Fukada T. Zinc transporters and signaling in physiology and pathogenesis. Arch Biochem Biophys. 2016;611:43–50. doi: 10.1016/j.abb.2016.06.020
- Cheng Y, Zhao C, Bin Y, et al. The pathophysiological functions and therapeutic potential of GPR39: Focus on agonists and antagonists. Int Immunopharmacol. 2024;143–3:113491. doi: 10.1016/j.intimp.2024.113491
- Mlyniec K. Interaction between zinc, GPR39, BDNF and neuropeptides in depression. Curr Neuropharmacol. 2021;19(11): 2012–2019. doi: 10.2174/1570159X19666210225153404
- Siodłak D, Nowak G, Mlyniec K. Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Res Bull. 2021;170:146–154. doi: 10.1016/j.brainresbull.2021.02.003
- Starowicz G, Siodłak D, Nowak G, Mlyniec K. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep. 2023;75(3):609–622. doi: 10.1007/s43440-023-00478-0
- Rychlik M, Mlyniec K. Zinc-mediated neurotransmission in Alzheimer’s disease: A potential role of the GPR39 in dementia. Curr Neuropharmacol. 2020;18(1):2–13. doi: 10.2174/1570159X17666190704153807
- Rychlik M, Starowicz G, Starnowska-Sokol J, Mlyniec K. The zinc-sensing receptor (GPR39) modulates declarative memory and age-related hippocampal gene expression in male mice. Neuroscience. 2022;503:1–16. doi: 10.1016/j.neuroscience.2022.09.002
- Rychlik M, Starnowska-Sokol J, Mlyniec K. Chronic memantine disrupts spatial memory and up-regulates Htr1a gene expression in the hippocampus of GPR39 (zinc-sensing receptor) KO male mice. Brain Res. 2023;1821:148577. doi: 10.1016/j.brainres.2023.148577
- Chen Z, Gordillo-Martinez F, Jiang L, et al. Zinc ameliorates human aortic valve calcification through GPR39 mediated ERK1/2 signalling pathway. Cardiovasc Res. 2021;117(3):820–835. doi: 10.1093/cvr/cvaa090
- Iovino L, Cooper K, deRoos P, et al. Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice. Blood. 2022;139(25):3655–3666. doi: 10.1182/blood.2021013950
- Xia P, Yan L, Ji X, et al. Functions of the zinc-sensing receptor GPR39 in regulating intestinal health in animals. Int J Mol Sci. 2022;23(20):12133. doi: 10.3390/ijms232012133
- Allouche-Fitoussi D, Breitbart H. The role of zinc in male fertility. Int J Mol Sci. 2020;21(20):7796. doi: 10.3390/ijms21207796
- He C, Dai F-F, Liu J-S, et al. Expressions of zinc homeostasis proteins, GPR39 and ANO1 mRNA in the sperm of asthenozoospermia patients and their clinical significance. Zhonghua Nan Ke Xue. 2024;30(1):18–25. (In Chinese)
- Laitakari A, Liu L, Frimurer TM, Holst B. The zinc-sensing receptor GPR39 in physiology and as a pharmacological target. Int J Mol Sci. 2021;22(8):3872. doi: 10.3390/ijms22083872
- Hershfinkel M, Moran A, Grossman N, Sekler I. A zinc-sensing receptor triggers the release of intracellular and regulates ion transport. PNAS USA. 2001;98(20):11749–11754. doi: 10.1073/pnas.201193398
- Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol. 2024;602(8):1579–1594. doi: 10.1113/JP283834
- Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today. 2024;29(2):103861. doi: 10.1016/j.drudis.2023.103861
- Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, in health and disease. Int J Mol Sci. 2018;19(2):439. doi: 10.3390/ijms19020439
- Prasad AS. Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol. 2014;28(4):357–363. doi: 10.1016/j.jtemb.2014.09.002
- Searle T, Ali FR, Al-Niaimi F. Zinc in dermatology. J Dermatolog Treat. 2022;33(5):2455–2458. doi: 10.1080/09546634.2022.2062282
- Yee BE, Richards P, Sui JY, Marsch AF. Serum zinc levels and efficacy of zinc treatment in acne vulgaris: A systematic review and meta-analysis. Dermatol Ther. 2020;33(6):e14252. doi: 10.1111/dth.14252
- Kogan S, Sood A, Garnick MS. Zinc and wound healing: A review of zinc physiology and clinical applications. Wounds. 2017;29(4):102–106.
- Maxfield L, Shukla S, Crane JS. Zinc deficiency. In: StatPearls. StatPearls Publ.; 2024.
- Hajj J, Sizemore B, Singh K. Impact of epigenetics, diet, and nutrition-related pathologies on wound healing. Int J Mol Sci. 2024;25(19):10474. doi: 10.3390/ijms251910474
- Tang Y, Yang Q, Lu J, et al. Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem. 2010;21(3):237–246. doi: 10.1016/j.jnutbio.2008.12.010
- Li MS, Adesina SE, Ellis CL, et al. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol – Cell Physiol. 2016;312(1):C47–C55. doi: 10.1152/ajpcell.00208.2016
- Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease. Clin Exp Med. 2024;24(1):38. doi: 10.1007/s10238-024-01302-6
- Aliev G, Li Y, Chubarev VN, et al. Application of Acyzol in the context of zinc deficiency and perspectives. Int J Mol Sci. 2019;20(9):2104. doi: 10.3390/ijms20092104
- Skalny AV, Skalnaya MG, Grabeklis AR, et al. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr. 2018;57(7):2313–2322. doi: 10.1007/s00394-017-1584-y
- Siva S, Rubin DT, Gulotta G, et al. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(1):152. doi: 10.1097/MIB.0000000000000989
- Ehrlich S, Mark AG, Rinawi F, et al. Micronutrient deficiencies in children with inflammatory bowel diseases. Nutr Clin Pract. 2020;35(2):315–322. doi: 10.1002/ncp.10373
- MacMaster MJ, Damianopoulou S, Thomson C, et al. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin Nutr. 2021;40(1):327–331. doi: 10.1016/j.clnu.2020.05.010
- Bai Y, Liu CP, Song X, et al. Photo- and pH- Dual-Responsive β-Cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery. Chem Asian J. 2018;13(24): 3903–3911. doi: 10.1002/asia.201801366
- Zhao H, Song A, Wang L, et al. Research on the damage and wound repair of cornea by GO and ZnO. Cutan Ocul Toxicol. 2024;43(4):237–252. doi: 10.1080/15569527.2024.2387592
- Kavanagh O, Elmes R, O’Sullivan F, et al. Investigating structural property relationships to enable repurposing of pharmaceuticals as zinc ionophores. Pharmaceutics. 2021;13(12):2032. doi: 10.3390/pharmaceutics13122032
- Marukhlenko AV, Morozova MA, Mbarga AMJ, et al. Chelation of zinc with biogenic amino acids: Description of properties using balaban index, assessment of biological activity on spirostomum ambiguum cellular biosensor, influence on biofilms and direct antibacterial action. Pharmaceuticals. 2022;15(8):979. doi: 10.3390/ph15080979
- Shakhmardanova SA, Galenko-Yaroshevskii PA. N-alkenylimidazole metal complex derivatives as effective agents for the hypoxic conditions. Research Results in Pharmacology. 2017;3(1):49–72. doi: 10.18413/2500-235X-2017-3-1-49-72
- Shakhmardanova SA, Galenko-Yaroshevsky PA. Zinc complex compound with N-alkenylimidazoles: biological activity and application in medicine (review). Sechenov medical journal. 2022;(3):84–90.
- Shakhmardanova SA, Galenko-Yaroshevsky PA. Metal complex derivatives of 1-alkenylimidazole. Antihypoxic properties, mechanisms of action, prospects for clinical use. Krasnodar: Prosveshchenie-Yug; 2015. 267 p. EDN: UWNLBR (In Russ.)
- Lebedeva SA, Galenko-Yaroshevsky PA, Fateeva TV, et al. Effective wound healing agents based on N-alkenylimidazole zinc complexes derivatives: future prospects and opportunities. Research Results in Pharmacology. 2023;9(3):27–39. doi: 10.18413/rrpharmacology.9.10047 EDN: GUANYX
- Galenko-Yaroshevsky PA, Slavinskiy AА, Todorov SS, et al. The effect of zinc complex of N-isopropenylimidazole on the morphological characteristics of gum tissues in experimental endodontic-periodontal lesions in rats. Research Results in Pharmacology. 2023;9(4):1–12. doi: 10.18413/rrpharmacology.9.10040 EDN: XSJCRL
- Galenko-Yaroshevsky PA, Shelemekh OV, Popkov VL, et al. Study of the anti-inflammatory, analgesic, ulcerogenic and anti-ulcerogenic activity of N-isopropenylimidazole zinc complex derivative. Research Results in Pharmacology. 2024;10(1):23–43. doi: 10.18413/rrpharmacology.10.443 EDN: SYEQCA
- Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337
- Morris CJ. Carrageenan-induced paw edema in the rat and mouse. In: Winyard PG, Willoughby DA, editors. Inflammation protocols. Methods in molecular biology. Vol. 225. Humana Press; 2003. P. 115–121. doi: 10.1385/1-59259-374-7:115
- Galenko-Yaroshevsky PA, Pavlyuchenko II, Shelemekh OV, et al. Study of anti-inflammatory, antioxidant, antimicrobial and mineralizing effects of an N-isopropenylimidazole zinc metal complex derivative in experimental endodontic-periodontal lesions in rats. Research Results in Pharmacology. 2024;10(4):1–13. doi: 10.18413/rrpharmacology.10.515 EDN: OITWOK
- Belyanina EV, Bolotnikova MV, Lykov MV. Application of laser Doppler flowmetry to improve the objectivity of measuring carrageenan-induced edema in rats. Russian Journal of Biotherapy. 2016;15(1):11–12. EDN: WGIFGR (In Russ.)
- Lebedeva SA, Galenko-Yaroshevsky PA, Samsonov MY, et al. Molecular mechanisms of wound healing: the role of zinc as an essential microelement. Research Results in Pharmacology. 2023;9(1):25–39. doi: 10.18413/rrpharmacology.9.10003 EDN: DBMFVD
- Guschin YaA, Kovaleva MA. Comparative morphology of human and laboratory animals. Laboratory Animals for Science. 2019;(2):6. doi: 10.29296/2618723X-2019-02-06 EDN: GNZOWC
- Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014;7(11):1205. doi: 10.1242/dmm.016782
- Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. doi: 10.1159/000339613
- Kuravi SJ, Ahmed NS, Taylor KA, et al. Delineating zinc influx mechanisms during platelet activation. Int J Mol Sci. 2023;24(14):11689. doi: 10.3390/ijms241411689
- Sobczak AIS, Ajjan RA, Stewart AJ. Zn2+ differentially influences the neutralisation of heparins by HRG, fibrinogen, and fibronectin. Int J Mol Sci. 2023;24(23):16667. doi: 10.3390/ijms242316667
- Martins-Green M, Petreaca M, Wang L. Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv Wound Care. 2013;2(7):327. doi: 10.1089/wound.2012.0380
- Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1): 158–175. doi: 10.1111/j.1600-065X.2012.01146.x
- Saidov MZ. Cellular and molecular mechanisms of pathogenesis of immune-inflammatory rheumatic diseases. Makhachkala: Lotus; 2023. 280 p. (In Russ.)
- Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol. 2006;117(5):979–987. doi: 10.1016/j.jaci.2006.02.023
- Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
- Piipponen M, Li D, Landén NX. The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 2020;21(22):8790. doi: 10.3390/ijms21228790
- Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209. doi: 10.1089/wound.2017.0761
- Pastar I, Stojadinovic O, Yin NC, et al. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care. 2014;3(7):445. doi: 10.1089/wound.2013.0473
- Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev. 2018;99(1):665–706. doi: 10.1152/physrev.00067.2017
- Coger V, Million N, Rehbock C, et al. Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol Trace Elem Res. 2018;191(1):167–176. doi: 10.1007/s12011-018-1600-y
- Sharir H, Zinger A, Nevo A, et al. Zinc released from injured cells is acting via the -sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem. 2010;285(34):26097–26106. doi: 10.1074/jbc.M110.107490
- Lebedeva SA, Galenko-Yaroshevsky PA, Rychka VO, et al. Molecular aspects of the wound healing effect of zinc as an essential trace element. Trace elements in medicine. 2022;23(1):14–23. doi: 10.19112/2413-6174-2022-23-1-14-23 EDN: UQLYOZ
- Takagishi T, Hara T, Fukada T. Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci. 2017;18(12):2708. doi: 10.3390/ijms18122708
- Lansdown ABG, Mirastschijski U, Stubbs N, et al. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15(1):2–16. doi: 10.1111/j.1524-475X.2006.00179.x
- Al-Khafaji Z, Brito S, Bin B-H. Zinc and zinc transporters in dermatology. Int J Mol Sci. 2022;23(24):16165. doi: 10.3390/ijms232416165
- Satianrapapong W, Pongkorpsakol P, Muanprasat C. A G-protein coupled receptor 39 agonist stimulates proliferation of keratinocytes via an ERK-dependent pathway. Biomed Pharmacother. 2020;127:110160. doi: 10.1016/j.biopha.2020.110160
- Nishida K, Hasegawa A, Yamasaki S, et al. Mast cells play role in wound healing through the ZnT2/GPR39/IL-6 axis. Sci Rep. 2019;9:10842. doi: 10.1038/s41598-019-47132-5
- Sunuwar L, Medini M, Cohen L, et al. The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos Trans Royal Soc B: Biol Sci. 2016;371(1700):20150420. doi: 10.1098/rstb.2015.0420
- Opoka W, Adamek D, Plonka M, et al. Importance of luminal and mucosal zinc in the mechanism of experimental gastric ulcer healing. J Physiol Pharmacol. 2010;61(5):581–591.
- Bai H-H, Wang K-L, Zeng X-R, et al. GPR39 regulated spinal glycinergic inhibition and mechanical inflammatory pain. Sci Adv. 2024;10(5):eadj3808. doi: 10.1126/sciadv.adj3808
- Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–342. doi: 10.1146/annurev-immunol-030409-101311
- Summersgill H, England H, Lopez-Castejon G, et al. Zinc depletion regulates the processing and secretion of IL-1β. Cell Death Dis. 2014;5(1):e1040. doi: 10.1038/cddis.2013.547
- Brough D, Pelegrin P, Rothwell NJ. Pannexin-1-dependent caspase-1 activation and secretion of IL-1β is regulated by zinc. Eur J Immunol. 2009;39(2):352–358. doi: 10.1002/eji.200838843
- Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31–40. doi: 10.1046/j.1365-2958.2000.02103.x
- Alsina L, Israelsson E, Altman MC, et al. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat Immunol. 2014;15(12):1134. doi: 10.1038/ni.3028
- Prasad AS. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J Trace Elem Med Biol. 2014;28(4):364–371. doi: 10.1016/j.jtemb.2014.07.019
- Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5(167):167sr1. doi: 10.1126/scitranslmed.3004700
- Wen X, Aoi J, Mijee T, et al. SLC39A7 upregulation links to skin fibrosis in systemic sclerosis via TGF-β/SMAD pathway. J Dermatol. 2024;51(6):863–868. doi: 10.1111/1346-8138.17103
- Kim SH, Oh JM, Roh H, et al. Zinc-Alpha-2-glycoprotein peptide downregulates type I and III collagen expression via suppression of TGF-β and p-Smad 2/3 pathway in keloid fibroblasts and rat incisional model. Tissue Eng Regen Med. 2024;21(7):1079–1092. doi: 10.1007/s13770-024-00664-y
- Jiang Y, Tsoi LC, Billi AC, et al. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 2020;5(20):e142067. doi: 10.1172/jci.insight.142067
- Feldmeyer L, Keller M, Niklaus G, et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes. Curr Biol. 2007;17(13):1140–1145. doi: 10.1016/j.cub.2007.05.074
- Koike S, Yamasaki K. Melanogenesis connection with innate immunity and toll-like receptors. Int J Mol Sci. 2020;21(24):9769. doi: 10.3390/ijms21249769
- Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the skin immune system in wound healing. Cells. 2024;13(7):624. doi: 10.3390/cells13070624
- Dierichs L, Kloubert V, Rink L. Cellular zinc homeostasis modulates polarization of THP-1-derived macrophages. Eur J Nutr. 2018;57(6):2161–2169. doi: 10.1007/s00394-017-1491-2
- Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–3885. doi: 10.1007/s00018-016-2268-0
- Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73(2):209–212. doi: 10.1189/jlb.0602325
- Brancato SK, Albina JE. Wound macrophages as key regulators of repair: Origin, phenotype, and function. Am J Pathol. 2011;178(1):19–25. doi: 10.1016/j.ajpath.2010.08.003
- Vogel DYS, Glim JE, Stavenuiter AWD, et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology. 2014;219(9):695–703. doi: 10.1016/j.imbio.2014.05.002
- Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–997. doi: 10.1172/JCI44490
- Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. doi: 10.1111/j.1524-475X.2008.00410.x
- Kim B, Lee W-W. Regulatory role of zinc in immune cell signaling. Mol Cell. 2021;44(5):335–341. doi: 10.14348/molcells.2021.0061
- Colomar-Carando N, Meseguer A, Company-Garrido I, et al. Zip6 transporter is an essential component of the lymphocyte activation machinery. J Immunol. 2019;202(2):441–450. doi: 10.4049/jimmunol.1800689
