Cytokine profile and markers of fat metabolism in bronchial asthma patients with obesity and multimorbidity

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The number of people with multimorbidity has been steadily increasing in recent years. In patients with bronchial asthma, the level of control and cytokine profile with markers of fat metabolism may depend on body mass index and the presence of multimorbidity.

AIM: To assess the relationships of disease control level, cytokine profile, adiponectins and oxidant stress level in asthma patients depending on body mass index and multimorbidity

MATERIALS AND METHODS: Patients with asthma (n = 237) were divided into 3 groups depending on body mass index. We analyzed multimorbid pathology, assessed asthma control according to Asthma Control Questionnaire-5; determined interleukin-6, -4, resistin, tumor necrosis factor-alpha, degree of oxidative damage to biomolecules, antioxidant capacity of serum, leptin, adiponectin levels. Statistical analysis: Microsoft Excel, Statistica 12.0, Statgraphics XVIII.

RESULTS: There were significantly more (p < 0.05) comorbidities among the obese and asthma patients. The levels of leptin, resistin, interleukin-6, tumor necrosis factor-alpha, and degree of oxidative damage to biomolecules were significantly higher in the obese group. Direct correlations were found between body mass index, cumulative pathology rating scale, Asthma Control Questionnaire-5 and interleukin-6, tumor necrosis factor-alpha, degree of oxidative damage to biomolecules, leptin, and resistin control levels of asthma. An inverse correlation with adiponectin was detected with body mass index.

CONCLUSIONS: Authentic increase of adipokins and anti-inflammatory cytokines, oxidative stress indexes and decrease of anti-inflammatory effects of adiponectin are noted in patients with asthma and obese patients. Multimorbidity further contributes to the development of systemic inflammation in patients with asthma. Obesity and multimorbidity are factors complicating the achievement of asthma control.

Full Text

Restricted Access

About the authors

Ludmila V. Tribuntceva

Voronezh State Medical University named after N.N. Burdenko

Email: tribunzewa@yandex.ru
ORCID iD: 0000-0002-3617-8578

md, cand. sci. (med.), assistant professor

Russian Federation, 10 Studencheskaya St., Voronezh, 394036

Andrey V. Budnevsky

Voronezh State Medical University named after N.N. Burdenko

Email: budnev@list.ru
ORCID iD: 0000-0002-1171-2746

md, dr. sci. (med), professor

Russian Federation, 10 Studencheskaya St., Voronezh, 394036

Galina G. Prozorova

Voronezh State Medical University named after N.N. Burdenko

Email: prozorovagg@gmail.com
ORCID iD: 0000-0001-8675-1590

md, dr. sci. (med), professor

Russian Federation, 10 Studencheskaya St., Voronezh, 394036

Lyudmila V. Vasilieva

Voronezh State Medical University named after N.N. Burdenko

Email: ludmilvasil@mail.ru
ORCID iD: 0000-0002-9900-556X

md, dr. sci. (med), professor

Russian Federation, 10 Studencheskaya St., Voronezh, 394036

Oleg N. Choporov

Voronezh State Medical University named after N.N. Burdenko

Author for correspondence.
Email: choporov_oleg@mail.ru
ORCID iD: 0000-0002-3176-499X

dr. sci. (technical), professor

Russian Federation, 10 Studencheskaya St., Voronezh, 394036

References

  1. Global Strategy for Asthma Management and Prevention (2022 update). [Internet]. Available from: https://ginasthma.org/wp-content/uploads/2022/07/GINA-Main-Report-2022-FINAL-22-07-01-WMS.pdf
  2. Wang G, McDonald VM, Gibson PG. Management of severe asthma: from stepwise approach to therapy to treatable traits? Precis Clin Med. 2021;4(4):293–296. doi: 10.1093/pcmedi/pbab028
  3. Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;18(1):5–66. (In Russ.) doi: 10.15829/1728-8800-2019-1-5-66
  4. Tribuntseva LV, Avdeyev SN, Budnevskiy AV, et al. Combined effect of multimorbidity and increased body mass index on control of bronchial asthma and quality of patients’ life. I.P. Pavlov Russian Medical Biological Herald. 2023;31(1):37–48. (In Russ.) doi: 10.17816/PAVLOVJ111895
  5. Ermolova AV, Budnevsky AV, Malysh EYu, et al. Bronchial asthma and metabolic syndrome. Clinical Medicine. 2015;93(6):44–49. (In Russ.)
  6. Markova TN, Fomina DS, Kostenko AA, Bobrikova EN. Obesity and bronchial asthma: two diseases with common aspects of pathogenesis. Profilakticheskaya Meditsina. 2020;23(4):126–132. (In Russ.) doi: 10.17116/profmed202023041126
  7. Peters MC, McGrath KW, Hawkins GA, et al. Plasma interleukin-6concentrations, metabolic dysfunction, and asthma severity: a cross-sectional cohorts. Lancet Respir Med. 2016;4:574–584. doi: 10.1016/S2213-2600(16)30048-0
  8. Carbone F, La Rocca C, Matarese G. Immunological functions of leptin and adiponectin. Biochimie. 2012;94(10):2082–2088. doi: 10.1016/j.biochi.2012.05.018
  9. Patel L, Buckels AC, Kinghorn IJ, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 2003;300(2):472–476. doi: 10.1016/s0006-291x(02)02841-3
  10. Pang SS, Le YY. Role of resistin in inflammation and inflammation-related diseases. Cell Mol Immunol. 2006;3(1):29–34.
  11. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab. 2007;9(3):282–289. doi: 10.1111/j.1463-1326.2006.00610.x
  12. Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55(6):1840–1846. doi: 10.2337/db05-1174
  13. Dedov II, Mokrysheva NG, Mel’nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23(4):311–325. (In Russ.). doi: 10.26442/20751753.2021.4.200832
  14. Juniper EF, O’Byrne PM, Guyatt GH, et al. Development and validation of a questionnaire to measure asthma control. Eur Respir J. 1999;14(4):902–907. doi: 10.1034/j.1399-3003.1999.14d29.x
  15. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;(16)5:622–626. doi: 10.1111/j.1532-5415.1968.tb02103.x
  16. Obesity and Overweight Factsheet [Internet]. WHO. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed: 23.08.2023.
  17. Dixon AE, Que LG. Obesity and asthma. Semin Respir Crit Care Med. 2022;43(5):662–674. doi: 10.1055/s-0042-1742384
  18. Kytikova OY, Antonyuk MV, Gvozdenko TA, Novgorodtseva TР. Metabolic aspects of the relationship of asthma and obesity. Obesity and metabolism. 2018;15(4):9–14. (In Russ.). doi: 10.14341/omet9578
  19. Wonisch W, Falk A, Sundl I, et al. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male. 2012;15(3):159–165. doi: 10.3109/13685538.2012.669436
  20. Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr Respir Rev. 2021;37:18–21. doi: 10.1016/j.prrv.2020.05.004
  21. Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity. 2019;50(4):975–991. doi: 10.1016/j.immuni.2019.03.018
  22. Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020;21(16):5887. doi: 10.3390/ijms21165887
  23. Sood A, Ford ES, Camargo CA. Association between leptin and asthma in adults. Thorax. 2006;61(4):300–305. doi: 10.1136/thx.2004.031468
  24. Kytikova OY, Antonyuk MV, Gvozdenko TA, Novgorodtseva TP. The pathophysiological role of adipokines in the development of bronchial asthma combined with obesity. Terapevticheskii arkhiv. 2021. Vol. 93. N. 3. P. 327–332. (In Russ.) doi: 10.26442/00403660.2021.03.200659
  25. Peters MC, McGrath KW, Hawkins GA, et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016;4(7):574–584. doi: 10.1016/S2213-2600(16)30048-0
  26. Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. The Clinician. 2020;14(3–4):10–17. (In Russ.) doi: 10.17650/1818-8338-2020-14-3-4-K-633
  27. Fève B, Bastard JP. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(6):305–311. doi: 10.1038/nrendo.2009.62
  28. Turan N, Edwards MJ, Bates S, et al. IL-6 pathway upregulation in subgroup of severe asthma is associated with neutrophilia and poor lung function. Clin Exp Allergy. 2018;48(4):475–478. doi: 10.1111/cea.13085
  29. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFα in pulmonary pathophysiology. Respir Res. 2006;7(1):125. doi: 10.1186/1465-9921-7-125
  30. Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. (In Russ.). doi: 10.14341/probl12805
  31. Bobkova IN, Gussaova SS, Stavrovskaya EV, et al. Serum levels of resistin in patients with morbid obesity. Klinicheskaya farmakologiya i terapiya. 2019;28(4):24–29. (In Russ.) doi: 10.32756/0869-5490-2019-4-24-29
  32. Osman AME, Motawie AAM, Abd Al-Aziz AM, et al. Role of adiponectin, resistin and monocyte chemo-attractant protein-1 in overweight/obese asthma phenotype in children. BMC Pediatr. 2023;23(1):226. doi: 10.1186/s12887-023-04046-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Interleukin-6, leptin, degree of oxidative damage to biomolecules (PerOx), and tumor necrosis factor-alpha (TNF-α) values as a function of the Asthma Control Questionnaire-5 control level of asthma. Mean — average value; SE — standard deviation

Download (366KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 70763 от 21.08.2017 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies