Analysis of the accumulation of homozygosity regions in chickens of the Pushkin breed using data from whole genome genotyping

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The search for genetic factors influencing the formation of the productive qualities of new breeding forms and populations of chickens is an important direction in the study of animal genomes. The knowledge gained can be in demand in projects to create modern domestic highly productive poultry lines.

AIM: To conduct a comparative analysis of the localization of homozygous regions on chicken chromosomes in representatives of four breeds from the Genetic Collection of Rare and Endangered Breeds of Chickens to identify “traces of selection” and search for genes associated with productive traits.

MATERIALS AND METHODS: Based on the bioinformatic analysis of 42275 SNP markers identified using the Illumina Chicken 60K SNP iSelect BeadChip microchip, data were obtained on the distribution of homozygous regions of four populations of chickens at the Genetic Collection of Rare and Endangered Breeds of Chickens (VNIIGRZH, St. Petersburg): Pushkinskaya (n = 20), Cornish (n = 22), Black-and-White Australorp (n = 20), Russian White (n = 23).

RESULTS AND CONCLUSIONS: In chickens of the Pushkin breed, the observed heterozygosity was 0.372 ± 0.004, which is higher than in other populations. According to the inbreeding index, based on the analysis of homozygous regions, the maximum level was found in Cornish chickens. For the Pushkin breed, the accumulation of homozygous regions on chromosomes 1, 2, 6, 8 was noted. The genes annotated in these loci are evidence of intensive selection.

Full Text

Restricted Access

About the authors

Natalia V. Dementieva

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: dementevan@mail.ru
ORCID iD: 0000-0003-0210-9344
SPIN-code: 8768-8906
Scopus Author ID: 57189759592
ResearcherId: Т-4551-2018

Cand. Sci. (Biol.), Main Researcher

Russian Federation, Pushkin, Saint Petersburg

Yuri S. Shcherbakov

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: yura.10.08.94.94@mail.ru
ORCID iD: 0000-0001-6434-6287
SPIN-code: 3547-1009
Scopus Author ID: 57221619264
ResearcherId: AAR-5595-2020

Junior Researcher

Russian Federation, Pushkin, Saint Petersburg

Olga V. Mitrofanova

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: mo1969@mail.ru
ORCID iD: 0000-0003-4702-2736
SPIN-code: 4378-9500
Scopus Author ID: 57188701229
ResearcherId: S-5336-2018

Cand. Sci. (Biol.), Scientific Secretary

Russian Federation, Pushkin, Saint Petersburg

Anatoly B. Vakhrameev

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Author for correspondence.
Email: ab_poultry@mail.ru
ORCID iD: 0000-0001-5166-979X
SPIN-code: 6810-7339
Scopus Author ID: 56862214400
ResearcherId: AAD-1068-2022

Senior Researcher

Russian Federation, Pushkin, Saint Petersburg

Vadim K. Khlestkin

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: khlestkin@bionet.nsc.ru
ORCID iD: 0000-0001-9605-8028
SPIN-code: 6367-2970
Scopus Author ID: 56368129500
ResearcherId: D-5493-2018

Cand. Sci. (Chem.), Director

Russian Federation, Pushkin, Saint Petersburg

References

  1. vniigen.ru [Internet]. All-Russian research institute of genetics and breeding of farm animals. Available from: https://vniigen.ru/ckp-geneticheskaya-kollekciya-redkix-i-ischezayushhix-porod-kur/ (In Russ.)
  2. Patent RUS № 3633/17.07.2006. Popov II, Prokhorenko PN, Borisenko EV, et al. Kury: Pushkinskaya. Moscow: FGBU “Gossortkomissiya”, 2007. Available from: https://reestr.gossortrf.ru/sorts/9358991/ (In Russ.)
  3. Zhang Q, Guldbrandtsen B, Bosse M, et al. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics. 2015;16:542. doi: 10.1186/s12864-015-1715-x
  4. Joaquim LB, Chud TCS, Marchesi JAP, et al. Genomic structure of a crossbred Landrace pig population. PLoSOne. 2019;14(2): e0212266. doi: 10.1371/journal.pone.0212266
  5. Weng Z, Xu Y, Zhong M, et al. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data. Br Poult Sci. 2021:2003752. doi: 10.1080/00071668.2021.2003752
  6. Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol. 2021;53:72. doi: 10.1186/s12711-021-00664-9
  7. Cendron F, Mastrangelo S, Tolone M, et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds. Poult Sci. 2021;100(2):441–451. doi: 10.1016/j.psj.2020.10.023
  8. Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history and consanguinity. PLoSOne. 2010;5(11): e13996. doi: 10.1371/journal.pone.0013996
  9. Doekes HP, Bijma P, Windig JJ. How Depressing Is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock. Genes. 2021;12(6):926. doi: 10.3390/genes12060926
  10. Mastrangelo S, Tolone M, Di Gerlando R, et al. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal. 2016;10(5):746–754. doi: 10.1017/S1751731115002943
  11. Abdelmanova AS, Dotsev AV, Romanov MN, et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology. 2021;10(9):876. doi: 10.3390/biology10090876
  12. Peripolli E, Munari DP, Silva MVGB, et al. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics. 2016;48(3):255–271. doi: 10.1111/age.12526
  13. Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestryin unrelated individuals. Genome Res. 2009, 19(9): 1655–1664. doi: 10.1101/gr.094052.109
  14. Tao Z, Zhu C, Song W, et al. Inductive expression of the NOD1 signalling pathway in chickens infected with Salmonella pullorum. Br Poult Sci. 2017;58(3):242–250. doi: 10.1080/00071668.2017.1280771
  15. Abadjieva D, Ankova D, Grigorova S, Kistanova E. The effect of Artichoke (Cynara scolymus L.) on the expression of calcium-binding proteins in the eggshell gland of laying hens. Pol J Vet Sci. 2021;24(1):127–133. doi: 10.24425/pjvs.2021.136801
  16. Halgrain M, Bernardet N, Crepeau M, et al. Eggshell decalcification and skeletal mineralization during chicken embryonic development: defining candidate genes in the chorioallantoic membrane. Poult Sci. 2022;101(2):101622. doi: 10.1016/j.psj.2021.101622
  17. Miczán V, Kelemen K, Glavinics JR, et al. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons. Cereb Cortex. 2021;31(3):1786–1806. doi: 10.1093/cercor/bhaa326
  18. Peng Y, Song Y, Wang H. Systematic Elucidation of the Aneuploidy Landscape and Identification of Aneuploidy Driver Genes in Prostate Cancer. Front Cell Dev Biol. 2022;9:723466. doi: 10.3389/fcell.2021.723466
  19. Morioka S, Nigorikawa K, Okada E, et al. TMEM55a localizes to macrophage phagosomes to downregulate phagocytosis. J Cell Sci. 2018;131(5): jcs213272. doi: 10.1242/jcs.213272
  20. Kim HJ, Kim J. OTUD6A Is an Aurora Kinase A-Specific Deubiquitinase. Int J Mol Sci. 2021;22(4):1936. doi: 10.3390/ijms22041936
  21. Davoodi P, Ehsani A, Vaez Torshizi R, Masoudi AA. New insights into genetics underlying of plumage color. Anim Genet. 2022;53(1):80–93. doi: 10.1111/age.13156
  22. Shi Y, Wang Y, Jiang H, et al. Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling. Cell Death Dis. 2021;12:837. doi: 10.1038/s41419-021-03984-2
  23. Kobierecka PA, Wyszyńska AK, Gubernator J, et al. Chicken Anti-Campylobacter Vaccine – Comparison of Various Carriers and Routes of Immunization. Front Microbiol. 2016;7:740. doi: 10.3389/fmicb.2016.00740
  24. Mao HG, Xu XL, Cao HY, et al. H-FABP gene expression and genetic association with meat quality traits in domestic pigeons (Columba livia). Br Poult Sci. 2021;62(2):172–179. doi: 10.1080/00071668.2020.1839016
  25. Guo Y, Cheng L, Li X, et al. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network. Gen Comp Endocrinol. 2022;315:113939. doi: 10.1016/j.ygcen.2021.113939
  26. Shcherbakova A, Tiemann B, Buettner FFR, Bakker H. Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. PNAS USA. 2017;114(10): 2574–2579. doi: 10.1073/pnas.1613165114
  27. Tong H, Liu X, Li T, et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-β signaling pathway. Cancer Manag Res. 2019;11: 1869–1879. doi: 10.2147/CMAR.S184392
  28. Li D, Pan Z, Zhang K, et al. Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes. 2020;11(3):244. doi: 10.3390/genes11030244
  29. Dinh E, Rival T, Carrier A, et al. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis. 2021;12:460. doi: 10.1038/s41419-021-03742-4
  30. Chen Q, Wang Y, Liu Z, et al. Transcriptomic and proteomic analyses of ovarian follicles reveal the role of VLDLR in chicken follicle selection. BMC Genomics. 2020;21(1):486. doi: 10.1186/s12864-020-06855-w
  31. Luo W, Chen J, Li L, et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 2019;26(3):426–442. doi: 10.1038/s41418-018-0129-0
  32. Bello SF, Xu H, Guo L, et al. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci. 2021;100(9):101310. doi: 10.1016/j.psj.2021.101310
  33. Xing S, Liu R, Zhao G, Groenen MAM, et al. Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation With Abdominal Fat Weight in Chicken. Front Genet. 2021;12:723519. doi: 10.3389/fgene.2021.723519
  34. Vilchez Larrea S, Valsecchi WM, Fernández Villamil SH, Lafon Hughes LI. First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells. PeerJ. 2021;9: e11442. doi: 10.7717/peerj.1144
  35. Chen G, Sun J, Xie M, et al. PLAU Promotes Cell Proliferation and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Front Genet. 2021;12:651882. doi: 10.3389/fgene.2021.651882
  36. Wingo AP, Velasco ER, Florido A, et al. Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression. Biol Psychiatry. 2018;83(3):284–295. doi: 10.1016/j.biopsych.2017.08.013
  37. Shi CY, Kingston ER, Kleaveland B, et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science. 2020;370(6523): eabc9359. doi: 10.1126/science.abc9359
  38. Zhong Y, Chen L, Li J, et al. Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease. Medicine (Baltimore). 2021;100(11): e24769. doi: 10.1097/MD.0000000000024769
  39. Ruan W, Yang Y, Yu Q, et al. FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma. Cell Biol Int. 2021;45(11):2275–2286. doi: 10.1002/cbin.11675
  40. van Eldik W, Beqqali A, Monshouwer-Kloots J, et al. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. Int J Dev Biol. 2011;55:649–655. doi: 10.1387/ijdb.103207wv
  41. Zhang Z, Du H, Yang C, et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol. 2019;30(3):233–241. doi: 10.1080/10495398.2018.1476377
  42. Bottje W, Kong B-W, Reverter A, et al. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC Syst Biol. 2017;11:29. doi: 10.1186/s12918-017-0396-2
  43. Chen L, He Q, Liu Y, et al. PPP3CB Inhibits Migration of G401 Cells via Regulating Epithelial-to-Mesenchymal Transition and Promotes G401 Cells Growth. Int J Mol Sci. 2019;20(2):275. doi: 10.3390/ijms20020275
  44. Guo K, Lin X, Li Y, et al. Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain. Oncotarget. 2017;9:8350–8367. doi: 10.18632/oncotarget.23615
  45. Ríos H, Paganelli AR, Fosser NS. The role of PDLIM1, a PDZ-LIM domain protein, at the ribbon synapses in the chicken retina. J Comp Neurol. 2020;528(11):1820–1832. doi: 10.1002/cne.24855
  46. Zhang X, Yan Y, Lin W, et al. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol. 2019;16(1):118–132. doi: 10.1080/15476286.2018.1564462
  47. Yuan J, Li S, Sheng Z, et al. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genomics. 2022;23:91. doi: 10.1186/s12864-021-08280-z
  48. Mitrofanova OV, Dementieva NV, Fedorova ES, et al. Assessment of variability of egg production traits based on analysis of SNP markers and search for traces of selection in the genome of Russian white chickens. Ecological genetics. 2020;18(4):423–432. doi: 10.17816/ecogen46405

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Inbreeding index calculated on the basis of ROH parameters for hens of four populations. ABS - black-and-white Australorp, Сor - Cornish, Pu - Pushkin, RW - Russian White

Download (128KB)
3. Figure 2. Population affiliation of 85 chickens, performed using the Admixture program based on the analysis of 42275 SNP markers, for the number of clusters k = 2 (A), k = 3 (B), k = 4 (C). ABS - black-and-white Australorp, Сor - Cornish, Pu - Pushkin, RW - Russian White

Download (126KB)

Copyright (c) 2022 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies