Influence of air humidity on variability of morphological features of Vigna unguiculata (L.) Walp. in artificial conditions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Vigna unguiculata (cowpea) is a species widely cultivated in southern countries, it occupies the third place in the world in terms of cultivation area among leguminous crops. Cowpea is distinguished by its resistance to drought and infertile lands, productivity, nutritional value and excellent culinary qualities of pods and seeds. In recent years interest in vegetable varieties of cowpea has increased in Russia. It is necessary the creation of new varieties that adapted to cultivation in different regions and suitable for mechanized cultivation. The type of stem growth habit is one of important signs in the selection of modern cowpea varieties. Knowledge of variability and stability of this feature and its interrelationships with other morphological features is necessary for the effective implementation of culture breeding programs.

4 cowpea samples with different growth types were the material in this study. The plants were grown in contrast air humidity conditions — at 60% and 90%. At total 14 morphological features were analyzed in 110 plants. The analysis revealed the significant influence of air humidity on the variability of the length and width of the first leaf. It was shown influence of humidity on the ability of plants to form a climbing shoot. The variability of length of the second internode, the pod length and the width of the middle leaflet was depended on the individual characteristics of the genotype. The variation in plant length was due to a complex of factors and it was interrelated with growth conditions and genotypic characteristics. In addition, an unidentifiable effect of air humidity on the growth habit type of different samples was revealed.

Full Text

Restricted Access

About the authors

Ekaterina A. Krylova

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: e.krylova@vir.nw.ru
ORCID iD: 0000-0002-4917-6862
SPIN-code: 5424-9513

Research Associate, Laboratory of postgenomic researches

Russian Federation, Saint Petersburg

Elena K. Khlestkina

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: director@vir.nw.ru
ORCID iD: 0000-0002-8470-8254
SPIN-code: 3061-1429

Dr. Sci. Biol., Professor, Director

Russian Federation, Saint Petersburg

Marina O. Burlyaeva

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Author for correspondence.
Email: m.burlyaeva@vir.nw.ru
ORCID iD: 0000-0002-3708-2594
SPIN-code: 7298-0174

Cand. Sci. (Biol.), Leading Research Associate, Department of genetic resources leguminous crops

Russian Federation, Saint Petersburg

References

  1. Fery FL. New opportunities in Vigna. Trends in new crops and new uses. 2002:424–428.
  2. Boukar O, Togola A, Chamarthi S, et al. Cowpea [Vigna unguiculata (L.) Walp.] Breeding. Al-Khayri JM, Jain SM, Johnson DV, editors. Advances in Plant Breeding Strategies: Legumes. Vol. 7. Springer Nature, Switzerland AG, 2019. P. 201–243. doi: 10.1007/978-3-030-23400-3
  3. Boukar O, Fatokun CA, Roberts PA, et al. Cowpea. de Ron AM, editor. Grain Legumes. Springer New York, 2015. Р. 219–250. doi: 10.1007/978-1-4939-2797-5_7
  4. Faostat [Internet]. Crops and livestock products [accessed 30.05.2022]. Available at: www.fao.org/faostat/en/#data/QCL
  5. Citadin CT, Ibrahim AB, Aragão FJL. Genetic engineering in cowpea (Vigna unguiculata): history, status and prospects. GM Crops. 2011;2(3):144–149. doi: 10.4161/gmcr.2.3.18069
  6. Burlyaeva MO, Gurkina MV, Chebukin PA. Studies of long-podded cowpea from VIR collection and the prospects of its cultivation in Russia. Zemledelie. 2015;(1):45–48. (In Russ.)
  7. Gurkina MV. Variability and correlations of economically valuable traits in cowpea from the VIR collection in the environments of Astrakhan provincer. Proceedings on applied botany, genetics and breeding. 2019;180(1):59–65. (In Russ.) doi: 10.30901/2227-8834-2019-1-59-65
  8. Efremova ME, Dutov VN, Lobankova OYu. Osobennosti vyrashchivaniya vigny (Vigna) v usloviyakh zony neustoichivogo uvlazhneniya. Novosti nauki v APK. 2019;(3):436–439. (In Russ.)
  9. Zhuzhukin VI, Bagdalova AZ. Vigna — a valuable food crop for the lower Volga Region. Uspekhi sovremennogo estestvoznaniya. 2017;(11):30–35. (In Russ.)
  10. Shuaibova NSh, Khabibov AD, Omarova PA. Comparative analysis of the variable structure of Vigna unguiculata (L.) Warp. Morphological features in the conditions of lowland Dagestan. Proceedings of Gorsky State agrarian university. 2020;57(1):128–137. (In Russ.)
  11. Benlloch R, Berbel A, Serrano-Mislata A, et al. Floral initiation and inflorescence architecture: a comparative view. Ann Bot. 2007;100(3):659–676. doi: 10.1093/aob/mcm146
  12. Benlloch R, Berbel A, Ali L, et al. Genetic control of inflorescence architecture in legumes. Front Plant Sci. 2015;6:1–14. doi: 10.3389/fpls.2015.00543
  13. Singer SR, Hsiung LP, Huber SC. Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth. Am J Bot. 1990;77(10):1330–1335. doi: 10.1002/j.1537-2197.1990.tb11384.x
  14. Krylova EA, Khlestkina EK, Burlyaeva MO, Vishnyakova MA. Determinate growth habit of grain legumes: role in domestication and selection, genetic control. Ecological genetics. 2020;18(1):43–58. (In Russ.) doi: 10.17816/ecogen16141
  15. Krylova EA. The role of TFL1 orthologs in determining of plant architectonics. Russian Journal of Genetics. 2020;56(11):1308–1322. (In Russ.) doi: 10.31857/S0016675820110053
  16. Foucher F, Morin J, Courtiade J, et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/ CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell. 2003;15(11):2742–2754. doi: 10.1105/tpc.015701
  17. Dhanasekar P, Reddy KS. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genom. 2015;290(1):55–65. doi: 10.1007/s00438-014-0899-0
  18. Krylova E, Strygina K, Khlestkina E. Structural organization of TFL1-like genes in representatives of the tribe Phaseoleae DC. Biol Commun. 2021;66(2):85–108. doi: 10.21638/spbu03.2021.201
  19. Burlyaeva MO, Gurkina MV, Chebukin PA, et al. New varieties of vegetable cowpea (Vigna unguiculata subsp. Sesquipedalis (L.) Verdc.) and prospects of their cultivation in southern Russia. Vegetable crops of Russia. 2019;(5):33–37. (In Russ.) doi: 10.18619/2072-9146-2019-5-33-37
  20. Horn LN, Shimelis H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Ann Agric Sci. 2020;65(1):83–91. doi: 10.1016/j.aoas.2020.03.002
  21. Vavilov NI. Geograficheskaya izmenchivost’ rastenii. Nauchnoe slovo. 1928;1:23–33.
  22. Fortunatova OK. Zavisimost’ vysoty rastenii ot geograficheskikh faktorov proizrastaniya. Proceedings on Applied Botany, Genetics and Breeding. 1928;19(1):385–466.
  23. Huxley PA, Summerfield RJ, Hughes AP. Growth and development of soyabean cv. TK5 as affected by tropical daylengths, daylnight temperatures and nitrogen nutrition. Ann Appl Biol. 1976;82(1): 117–133. doi: 10.1111/j.1744-7348.1976.tb01679.x
  24. Inouye J, Shanmugasundaram S, Masuyama T. Effects of temperature and daylength soybean on the flowering some photo-insensitive varieties. Japanese J Trop Agric. 1979;22(4):167–171. doi: 10.11248/JSTA1957.22.167
  25. Huxley PA, Summerfield RJ. Effects of daylength and day/night temperatures on growth and seed yield of cowpea cv. K 2809 grown in controlled environments. Ann Appl Biol. 1976;83(2):259–271. doi: 10.1111/j.1744-7348.1976.tb00605.x
  26. Summerfield RJ, Minchin FR, Stewart KA, Ndunguru BJ. Growth, reproductive development and yield of effectively nodulated cowpea plants in contrasting aerial environments. Ann Appl Biol. 1978;90(2):277–291. doi: 10.1111/j.1744-7348.1978.tb02636.x
  27. Summerfield RJ, Wein HC. Effects of photoperiod and air temperature on growth and yield of economic legumes. Advances in legumes science. 1980:17–36.
  28. Wien HC, Summerfield RJ. Adaptation of cowpeas in West Africa: effects of photoperiod and temperature responses in cultivars of diverse origin. Advances in legume science. 1980:405–417.
  29. Dow El-Madina IM, Hall AE. Flowering of contrasting cowpea (Vigna unguiculata (L.) Walp.) genotypes under different temperatures and photoperiods. Field Crops Res. 1986:14:87–104. doi: 10.1016/0378-4290(86)90049-3
  30. Kondykov IV, Zotikov VI, Zelenov AN, et al. Biologiya i selektsiya determinantnykh form gorokha. Orel: Kartush, 2006. (In Russ.)
  31. Burlyaeva MO, Gurkina MV, Chebukin PA. Skrining obraztsov sparzhevoi vigny (Vigna unguiculata subsp. sesquipedalis (L.) Verdc.) iz kollektsii VIR na ustoichivost’ k abioticheskim i bioticheskim stressoram. Selektsiya i semenovodstvo ovoshchnykh kul’tur. 2014;45:131–141. (In Russ.)
  32. Vishnyakova MA, Buravtseva TA, Bulyntsev SV, et al (editors). Kollektsiya mirovykh geneticheskikh resursov zernovykh bobovykh VIR: popolnenie, sokhranenie i izuchenie. Metodicheskie ukazaniya. Saint Petersburg: VIR, 2010. 142 p. (In Russ.)
  33. Burlyaeva MO, Gurkina MV, Chebukin PA, et al. Mezhdunarodnyi klassifikator vidov roda Vigna Savi. Saint Petersburg, 2016. (In Russ.)
  34. Stoilova T, Pereira G. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. Afr J Agric Res. 2013;82:208–215. doi: 10.5897/AJAR12.1633
  35. Gerrano AS, Adebola PO, Jansen van Rensburg WS, Laurie SM. Genetic variability in cowpea (Vigna unguiculata (L.) Walp.) genotypes. S Afr J Plant Soil. 2015;32(3):165–174. doi: 10.1080/02571862.2015.1014435
  36. Mafakheri K, Bihamta MR, Abbasi AR. Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterization. Cogent Food and Agriculture. 2017;3(1):1327092. doi: 10.1080/23311932.2017.1327092
  37. Mohammed I, Alawa DA, Mshelia JS, et al. Effect of climate variation on the yield of cowpea (Vigna unguiculata). Afr J Agric Res. 2021;17(3):456–462. doi: 10.5897/AJAR2020.14960
  38. Aliyu OM, Lawal OO, Wahab AA, Ibrahim UY. Evaluation of advanced breeding lines of cowpea (Vigna unguiculata L. Walp.) for high seed yield under farmers’ field conditions. Plant Breed Biotechnol. 2019;7(1):12–23. doi: 10.9787/PBB.2019.7.1.12
  39. Ewansiha SU, Osaigbovo AU. Cowpea for a changing environment in the rainforest of South-South Nigeria. J Trop Agric Food Environ Ext. 2016;15(1):23–28. doi: 10.4314/as.v15i1.5
  40. Gbaguidi AA, Dansi A, Loko LY, et al. Diversity and agronomic performances of the cowpea (Vigna unguiculata Walp.) landraces in Southern Benin. Int Res J Agric Sci Soil Sci. 2013;3(4):121–133.
  41. Gbaguidi AA, Adjati A, Dansi A, et al. Diversity of cowpea (Vigna unguiculata (l.) Walp.) landraces in Central and Northern Benin. Int J Curr Microbiol Appl Sci. 2015;4(11):487–504.
  42. Hutchinson MJ, Muniu FK, Ambuko J, et al. Morphological and agronomic characterization of local vegetable cowpea accessions in Coastal Kenya. Afr J Hortic Sci. 2017;11:47–58.
  43. Ajetomobi J, Abiodun A. Climate change impacts on cowpea productivity in Nigeria. Afr J Food Agric Nutr Dev. 2010;10(3):2258–2271. doi: 10.4314/ajfand.v10i3.54082

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variability of morphological characters of vigna samples under artificial conditions. Mean - mean values, Mean ± SD - mean + standard deviation, Mean ± 1.96SD - mean + interval of 1.96 standard deviation. 1 - plant length, 2 - first internode length, 3 - second internode length, 4 - first leaf length, 5 - first leaf width, 6 - first leaf petiole length, 7 - primordial leaf length, 8 - primordial leaf width, 9 - middle leaf length, 10 - middle leaf width, 11 - middle leaf rachis length, 12 - bean length, 13 - bean width

Download (115KB)
3. Fig. 2. Variability of morphological characters depending on plant growth conditions. Numerals denote two groups of specimens grown at different values of humidity (1 - at low humidity, 2 - at high humidity). Mean - mean values, Mean ± SE - mean + standard error of the mean, Mean ± 1.96SE - mean + interval of 1.96 error of the mean

Download (198KB)
4. Fig. 3. Distribution of samples in the space of the first two factors (F1, F2)

Download (240KB)
5. Fig. 4. Distribution of samples in the space of the first two factors (F1, F2)

Download (336KB)
6. Fig. 5. Distribution of samples in the space of 1 and 2 principal coordinates (GC1 and GC2), calculated by the method of discriminant analysis of projections on latent structures

Download (130KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies