Genetic structure and differentiation of Scots pine (Pinus sylvestris L.) populations in the Middle and Upper Volga Regions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Due to broad geographical and ecological distribution of Scots pine we witness the shaping of a significant species heterogeneity. There is a demand in researching the features of the genetic structure and differentiation of Scots pine populations in different parts of the range.

MATERIALS AND METHODS: 12 populations were scrutinized with the use of ISSR markers. The genetic structure was assessed by estimating basic indicators of genetic diversity (the number of alleles per locus, the number of effective alleles, and the expected heterozygosity) and by the analysis of molecular variance (AMOVA). Genetic differentiation was assessed by Nei’s GST statistic, Mantel test, Principal Coordinates Analysis (PCoA), and creating a tree diagram.

RESULTS: Populations that grow on the right bank of the Volga in the northern and central parts of the Volga Uplands are characterized by a higher genetic diversity (Na = 1.84–1.89; Ne = 1.34–1.39; He = 0.217–0.241) and a lower subdivision (GST = 0.092). Populations that grow on the left bank proved lower rates of genetic variability (Na = 1.68–1.81; Ne = 1.27–1.35; He = 0.174–0.218) while the divergence was higher (GST = 0.179). Much of the genetic variability is within the populations (more than 80%).

CONCLUSIONS: The study determined differences in the genetic structure and the degree of differentiation of Scots pine populations, that grow on different banks of the Volga in the Middle and Upper Volga Regions.

Full Text

Restricted Access

About the authors

Olga V. Sheikina

Volga State University of Technology

Author for correspondence.
Email: ShejkinaOV@volgatech.net
ORCID iD: 0000-0002-7507-8588
SPIN-code: 2215-3308
Scopus Author ID: 57219486493

Cand. Sci. (Agricultural), Assistant Professor, Department of Forest Crops, Breeding and Biotechnology

Russian Federation, Yoshkar-Ola

References

  1. Debreczy Z, Racz I, Musia K. Conifers around the world. Budapest: Dendropress, 2011.
  2. Tóth EG, Kobolkuti ZA, Pedryc A, Hohn M. Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers. J For Res. 2017;28(4):637–651. doi: 10.1007/s11676-017-0393-8
  3. Semerikov VL, Podogas AV, Shurkhal AV. Variability of allozyme loci in populations of common pine. Russian Journal of Ecology. 1993;(1):18–25. (In Russ.)
  4. Vidyakin AI, Semerikov VL, Polezhaeva MA, Dymshakova OS. Rasprostranenie gaplotipov mitokhondrial’noi DNK v populyatsiyakh sosny obyknovennoi (Pinus sylvestris L.) na severe evropeiskoi Rossii. Russian Journal of Genetics. 2012;48(12):1440–1444. (In Russ.)
  5. Semerikov VL, Semerikova SA, Dymshakova OS, et al. Microsatellite loci polymorphism of chloroplast dna of scots pine (Pinus sylvestris L.) in Asia and Eastern Europe. Russian Journal of Genetics. 2014;50(6):660–669. (In Russ.) doi: 10.7868/S0016675814040122
  6. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics. 1994;20(2):176–183. doi: 10.1006/geno.1994.1151
  7. Hui-yu L, Jing J, Gui-feng L, et al. Genetic variation and division of Pinus sylvestris provenances by ISSR markers. J For Res. 2005;16(3):216–218. doi: 10.1007/BF02856818
  8. Nechaeva YuS, Boronnikova SV, Vedyakin AI, et al. Molecular genetic analysis of conifer plants populations in Urals and east European part of Russia for conservation and reproduction the forest resources. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014;16(1–3):878–882. (In Russ.)
  9. Vidyakin AI, Boronnikova SV, Nechayeva YuS, et al. Genetic variation, population structure, and differentiation in scots pine (Pinus ylvestris L.) From the northeast of the Russian plain as inferred from the molecular genetic analysis data. Russian Journal of Genetics. 2015;51(12):1401–1409. (In Russ.) doi: 10.7868/S0016675815120139
  10. Prishnivskaya YaV, Nassonova ES, Chertov NS, et al. Genetic diversity within species of two species woody plants populations in Perm Krai. Bulletin of science and practice. 2019;5(4):58–68. (In Russ.) doi: 10.33619/2414-2948/41/06
  11. Vasilyeva Y, Chertov N, Nechaeva Y, et al. Genetic structure, differentiation and originality of Pinus sylvestris L. populations in the East of the East European Plain. Forests. 2021;12(8):999. doi: 10.3390/f12080999
  12. Prus-Glowacki W, Bernard E. Allozyme variation in population of Pinus sylvestris from a 1912 provenance trail in Pilawy (Poland). Silvae Genetic. 1994;43(2–3):132–138.
  13. Tóth EG, Vendramin GG, Bagnoli F, et al. High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus sylvestris L.) populations along the Carpathians and the Pannonian Basin. Tree Genetics and Genomes. 2017;13:47. doi: 10.1007/s11295-017-1137-9
  14. Ilinov AA, Raevsky BV, Chirva OV. The state of gene pool of the basic forest-forming species of the White sea watershed (on the example of a Picea × fennica (Regel) kom. and Pinus sylvestris L.). Ecological genetics. 2020;18(2):185–202. (In Russ.) doi: 10.17816/ecogen19006
  15. Egorov EV. Allozyme geographical differentiation of Pinus sylvestris L. Populations in central Siberia and Trans-Baikalia. Siberian Journal of Forest Science. 2016;(5):12–20. (In Russ.) doi: 10.15372/SJFS20160501
  16. Zatsepina KG, Tarakanov VV, Kalchenko LI, et al. Differentiation of scots pine populations in the belt pine forests of Altai Krai discovered with markers of various nature. Siberian Journal of Forest Science. 2016;(5):21–32. (In Russ.) doi: 10.15372/SJFS20160502
  17. Shigapov ZKh, Bakhtiyarova RM, Yanbaev YuA. Geneticheskaya struktura i differentsiatsiya prirodnykh populyatsii sosny obyknovennoi (Pinus sylvestris L.). Russian Journal of Genetics. 1995;31(10):1386–1393. (In Russ.)
  18. Ilinov AA, Raevsky BV. Genetic diversity of scots pine trees of different selection categories in plus stands of Karelia. Ecological genetics. 2021;19(1):23–35. (In Russ.) doi: 10.17816/ecogen50176
  19. Milyutina TN, Sheikina OV, Novikov PS. Molekulyarno-geneticheskie issledovaniya izmenchivosti klonov plyusovykh derev’ev Pinus sylvestris po ISSR-markeram. Conifers of the boreal area. 2013;(1–2):102–105. (In Russ.)
  20. Gladkov YuF, Sheikina OV. Genetic polymorphism of the pinus sylvestris trees from bog land and upland cenopopulations on nuclear SSR loci. Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature Management. 2019;(4):70–79. (In Russ.) doi: 10.25686/2306-2827.2019.4.70
  21. Sheikina OV, Gladkov YuF. Genetic diversity and differentiation of Pinus sylvestris L. Cenopopulations growing in bog land and upland ecotopes. Tomsk State University Journal of Biology. 2020;(50): 101–118. (In Russ.) doi: 10.17223/19988591/50/5
  22. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;(19): 11–15.
  23. sites.ualberta.ca [Internet]. Yeh FC, Yang R, Boyle TJ. POPGENE VERSION 1.31 Microsoft Window-based Freeware for Population Genetic Analysis. Canada, Edmonton: University of Alberta, 1999. 28 p. [cited 2022 Jun 1]. Available at: https://sites.ualberta.ca/~fyeh/popgene.pdf
  24. Nei M. Genetic distance between populations. Am Nat. 1972;106(949):283–292. doi: 10.1086/282771
  25. Nei M. Analysis of genetic diversity in subdivided population. PNAS. 1973;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321
  26. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics. 2012;28(19):2537–2539. doi: 10.1093/bioinformatics/bts460
  27. Takezaki N, Nei M, Tamura K. POPTREEW: Web Version of POPTREE for Constructing Population Trees from Allele Frequency Data and Computing Some Other Quantities. Mol Biol Evol. 2014;31(6):1622–1624. doi: 10.1093/molbev/msu093
  28. Cipriano J, Carvalho A, Fernandes C, et al. Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future use of this germplasm. J Genet. 2013;92:41–48. doi: 10.1007/s12041-013-0241-3
  29. Hamrick J, Godt M, Sherman-Broyles S. Factors influencing levels of genetic diversity in woody plant species. New Forest. 1992;6:95–124. doi: 10.1007/BF00120641
  30. Sannikov SN, Petrova IV, Egorov EV, Sannikova NS. Searching for and revealing the system of pleistocene refugia for the species Pinus sylvestris L. Russian Journal of Ecology. 2020;(3):181–189. doi: 10.31857/S0367059720030130

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-diagram of the location of the collection points of samples of scots pine. The names of the collection points are given in accordance with Table 1

Download (154KB)
3. Fig. 2. UPGMA dendrogram of the genetic proximity of the studied populations of Pinus sylvestris, based on the polymorphism of ISSR markers. The branching nodes contain bootstrap support values (10000 replications)

Download (40KB)
4. Fig. 3. The location of the populations of Scots pine in the space of the main coordinates (PCoA)

Download (103KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies