Polymorphism of GC gene, encoding vitamin D binding protein, in aboriginal populations of Siberia

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The analysis of the nucleotide sequences of exons and adjacent non-coding regions of the GC gene in 108 representatives of various ethnic groups of aboriginal population of Siberia was carried out. Polymorphism was found in four nucleotide positions: non-synonymous substitutions at the rs4588 and rs7041 loci, a synonymous substitution at the rs4752 locus, and a replacement in the non-coding region at the rs3733359 locus. Seven haplotypes of the GC gene were identified. Of these, 4 haplotypes encode the Gc1F isoform, 2 haplotypes encode the Gc1S isoform, and 1 haplotype encodes the Gc2 isoform. Between-regional differences were found in the distribution of variants of the GC gene: in the northeast and in the central part of Siberia, the highest prevalence of the Gc1F and Gc1F/Gc1F variants is observed, and in the south and west of Siberia, the Gc2, Gc1S/Gc2 and Gc2/Gc2 variants are most common. In the case of the GC gene, gene-environment interactions are apparently aimed at creating a balance between the activity of vitamin D-binding protein and the level of 25-hydroxyvitamin D in the blood serum.


Full Text

Restricted Access

About the authors

Boris A. Malyarchuk

Institute of Biological Problems of the North, Far Eastern Branch of Russian Academy of Sciences

Author for correspondence.
Email: malyarchuk@ibpn.ru
ORCID iD: 0000-0002-0304-0652

Russian Federation, Magadan

Dr. Biol. Sci., Head of Genetics Laboratory

References

  1. Козлов А.И., Атеева Ю.А. Витамин D и особенности питания различных групп коми // Вестник Московского университета. Серия XXIII. Антропология. – 2011. – № 4. – С. 25–34. [Kozlov AI, Ateeva JuA. Vitamin D i osobennosti pitaniya razlichnykh grupp komi. Vestnik Moskovskogo universiteta. Seriya 23. Antropologiya. 2011;(4):25-34. (In Russ.)]
  2. Zenata O, Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget. 2017;8(21):35390-35402. https://doi.org/10.18632/oncotarget.15697.
  3. Daiger SP, Schanfield MS, Cavalli-Sforza LL. Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D. Proc Natl Acad Sci USA. 1975;72(6):2076-2080. https://doi.org/10.1073/pnas.72.6.2076.
  4. Verboven C, Rabijns A, De Maeyer M, et al. A structural basis for the unique binding features of the human vitamin D-binding protein. Nat Struct Biol. 2002;9(2):131-136. https://doi.org/10.1038/nsb754.
  5. Malik S, Fu L, Juras DJ, et al. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit Rev Clin Lab Sci. 2013;50(1):1-22. https://doi.org/10.3109/10408363.2012.750262.
  6. Останин А.А., Кирикович С.С., Долгова Е.В., и др. Тернистый путь макрофаг-активирующего фактора (GcMAF): от открытия к клинической практике // Вавиловский журнал генетики и селекции. – 2019. – Т. 23. – № 5. – С. 624–631. [Ostanin AA, Kirikovich SS, Dolgova EV, et al. A thorny pathway of macrophage activating factor (GcMAF): from bench to bedside. Vavilov journal of genetics and breeding. 2019;23(5):624-631. (In Russ.)]. https://doi.org/10.18699/VJ19.535.
  7. Morales EM. GcMAF: a polemic or a highly promising molecule? World Scientific News. 2017;65:20-36.
  8. Kueppers F, Harpel B. Group-specific component (Gc)’subtypes’ of Gc1 by isoelectric focusing in US blacks and whites. Hum Hered. 1979;29(4): 242-249. https://doi.org/10.1159/000153052.
  9. Coppenhaver D, Kueppers F, Schidlow D, et al. Serum concentrations of vitamin D-binding protein (group-specific component) in cystic fibrosis. Hum Genet. 1981;57(4):399-403. https://doi.org/10.1007/bf00281693.
  10. Constans J, Lefevre-Witier P, Richard P, Jaeger G. Gc (vitamin D binding protein) subtype polymorphism and variants distribution among Saharan, Middle East, and African populations. Am J Phys Anthropol. 1980;52(3):435-441. https://doi.org/10.1002/ajpa.1330520315.
  11. Спицын В.А. Биохимический полиморфизм человека. – М.: Изд-во МГУ, 1985. – 216 с. [Spitsyn VA. Biokhimicheskiy polimorfism cheloveka. Moscow: Publishing house Moscow State University; 1985. 216 p. (In Russ.)]
  12. Спицын В.А., Лебедева И.А., Шнейдер Ю.В., и др. Полиморфизм белков и ферментов сыворотки крови // Генофонд и геногеография народонаселения / под ред. Ю.Г. Рычкова. Т. 1. Генофонд и геногеография населения России и сопредельных стран. – СПб.: Наука, 2000. – С. 146–181. [Spitsyn VA, Lebedeva IA, Shneider YuV, et al. Polymorphism of blood serum proteins and enzymes. In: Yu.G. Rychkov, editor. Gene Pool and Genegeography of population. Vol. 1. Gene pool of population of Russia and contiguous countries. Saint Petersburg: Nauka; 2000. Р. 146-181. (In Russ.)]
  13. Спицын В.А., Ирисова О.В. Этнографический аспект в изучении группоспецифического компонента (Gc) // Вопросы антропологии. – 1973. – № 45. – С. 85–93. [Spitsyn VA, Irisova OV. Etnograficheskiy aspekt v izuchenii gruppospetsificheskogo komponenta (Gc). Voprosy antropologii. 1973;(45): 85-93. (In Russ.)]
  14. Mourant AE, Tills D, Domaniewska-Sobczak K. Sunshine and the geographical distribution of the alleles of the Gc system of plasma proteins. Hum Genet. 1976;33(3):307–314. https://doi.org/10.1007/bf00286857.
  15. Шнейдер Ю.В., Лебедева И.А., Петрищев В.Н., Раутиан Г.С. Системы белков и ферментов сыворотки крови // Генофонд и геногеография народонаселения / под ред. Ю.Г. Рычкова. Т. 1. Генофонд и геногеография населения России и сопредельных стран. – СПб.: Наука, 2000. – С. 512-539. [Shneider YuV, Lebedeva IA, Petrishchev VN, Rautian GS. Systems of blood proteins and enzymes. In: Rychkov YuG, editor. Gene Pool and Genegeography of population. Vol. 1. Gene pool of population of Russia and contiguous countries. Saint Petersburg: Nauka; 2000. P. 512-539. (In Russ.)]
  16. Clemente FJ, Cardona A, Inchley CE, et al. A selective sweep on a deleterious mutation in the CPT1A gene in Arctic populations. Am J Hum Genet. 2014;95(5):584-589. https://doi.org/10.1016/j.ajhg.2014.09.016.
  17. Малярчук Б.А., Деренко М.В., Денисова Г.А., Литвинов А.Н. Распространенность арктического варианта гена CPT1A в популяциях коренного населения Сибири // Вавиловский журнал генетики и селекции. – 2016. – Т. 20. – № 5. – С. 571–575. [Malyarchuk BA, Derenko MV, Denisova GA, Litvinov AN. Distribution of the arctic variant of the CPT1A gene in indigenous populations of Siberia. Vavilov journal of genetics and breeding. 2016;20(5): 571-575.(In Russ.)]. https://doi.org/10.18699/VJ16.130.
  18. Pagani L, Lawson DJ, Jagoda E, et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature. 2016;538(7624): 238-242. https://doi.org/10.1038/nature19792.
  19. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;(1):47-50. https://doi.org/10.1177/117693430500100003.
  20. Jung KH, Kim TH, Sheen DH, et al. Associations of vitamin d binding protein gene polymorphisms with the development of peripheral arthritis and uveitis in ankylosing spondylitis. J Rheumatol. 2011;38(10):2224-2229. https://doi.org/10.3899/jrheum.101244.
  21. Фефелова В.В., Хамнагадаев И.И., Поликарпов Л.С. Антиген HLA-B27 и спондилоартропатии у арктических монголоидов // Бюллетень СО РАМН. – 2010. – Т. 30. – № 6. – С. 136–139. [Fefelova VV, Khamnagadaev II, Polikarpov LS. HLA-B27 antigen and spondylarthropathies in arctic mongoloids. Byulleten’ SO RAMN. 2010;30(6): 136-139. (In Russ.)]
  22. Козлов А.И., Вершубская Г.Г. 25-гидроксивитамин D в различных группах населения Севера России // Физиология человека. - 2019. – Т. 45. – № 5. – С. 125–136. [Kozlov AI, Vershubsky GG. Systematic review on 25-hydroxyvitamin D levels in various populations of the Russian North. Human Physiology. 2019;45(5):125-136. (In Russ.)]. https://doi.org/10.1134/S0131164619050060.
  23. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;319(8263):74-76. https://doi.org/ 10.1016/s0140-6736(82)90214-8.
  24. Mozzi A, Forni D, Cagliani R, et al. Albuminoid genes: evolving at the interface of dispensability and selection. Genome Biol Evol. 2014;6(11):2983-2997. https://doi.org/10.1093/gbe/evu235.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 135

PDF (Russian) - 2

Cited-By


PlumX

Dimensions


Copyright (c) 2020 Malyarchuk B.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies