The state of gene pool of the basic forest-forming species of the white sea watershed (on the example of a Picea × fennica (Regel) kom. And Pinus sylvestris L.)

Cover Page


Cite item

Abstract

Background. The genetic diversity of forest tree species populations is a key factor contributing to their resistance against negative effects of human activity, and the global climate change. The aim of the present study was to evaluate the state of gene pools of the main forest-forming species in the White Sea watershed.

Materials and methods. Five populations of Norway spruce and seven populations of Scotch pine have been selected within the Arctic zone of the European part of Russia (the western part of the White Sea watershed), along with two boundary ones located near the northern borders of the abovementioned species areas. The analysis of the spruce samples had been performed using five nuclear SSR loci, while for the pine samples it was four. DNA fragments were separated on a sequencer CEQ 8000. The main criteria of the genetic diversity (A99%, Ho, He) and F-statistics were calculated.

Results. The marginal spruce populations were characterized by the largest magnitude of the genetic diversity (Ho = 0.46; He = 0.47) and isolation (FST = 0.33) compared to other populations of the same species. The differences were statistically significant. All pine populations studied demonstrated a higher level of genetic diversity (Ho = 0.50, He = 0.63) compared to spruce populations. The differences between the boundary and in-area populations were not statistically reliable (FST = 0.04).

Conclusion. Our investigation revealed a sufficiently high level of spruce and pine northern populations’ genetic diversity making them able to withstand expected negative effects of anthropogenic activity and global climate change.

Full Text

INTRODUCTION

According to the definition of the Intergovernmental Group of Experts, the Arctic is one of the regions most vulnerable to global climate change [1]. The natural complexes of the Arctic, characterized by extreme climatic and geophysical conditions, are especially vulnerable and unstable to external influences and have a reduced ability for restoration and self-purification [2]. The White Sea, including the catchment basin, is critical for the study and development of the Arctic resources, because it is represented by a relatively small, semi-enclosed water source, so complex fundamental and applied research can be easily conducted in the area compared with other seas of the Arctic [3].

The catchment basin of the White Sea occupies most of the Arctic zone of the European North of Russia, including the territories of the Murmansk and Arkhangelsk regions, as well as the Republic of Karelia. They belong to the first group of territories directly adjacent to the sea and have a significant impact on its ecosystem [4]. The territories are represented by two natural zones, tundra and taiga, which are the main forests of the northern taiga subzone. The relevance of the conservation of the biological diversity of terrestrial ecosystems in this region is governed by the diversity and multiplicity of ecosystem services that humans receive from them. In particular, boreal forests occupy most of the territory and perform functions that are critical at all levels (local, regional, and global). The ecosystem functions of forests, such as fishing, hunting, leisure, spiritual activities, and economic opportunities, are critical to local people. Globally, boreal forests represent one of the most important regulators of the planet’s climate through the energy and water exchange. They also store an enormous amount of biogenic carbon, which is as large as that supplied by rainforests. The contribution of forests and afforestation to the solution of present issues, such as reducing risks from anthropogenic impacts and global climate change, in ensuring sustainable development of the region under study, partly depends on the presence of a rich interspecific and intraspecific diversity of tree species. Forest ecosystems remain the main refuge for biodiversity conservation. An important component of this contribution is genetic diversity, which is biodiversity at the intraspecific level of the main forest-forming species. Genetic diversity ensures the survival, adaptation, and development of tree forest species under changing environmental conditions. It also maintains the vitality of forests and provides resilience to stresses such as pests and diseases [5]. In addition, maintaining a high level of genetic diversity is necessary for breeding programs to create adapted varieties of clones or secure useful traits. Preserving the genetic potential of forest tree species, especially in a highly vulnerable region such as the Arctic, is vital as it represents a unique and irreplaceable resource for the future.

The study aimed to assess the current state of gene pools of the main forest-forming species of the White Sea catchment basin and predict the impact of anthropogenic factors on them, including global climate change.

MATERIALS AND METHODS OF RESEARCH

The objects of the study were the populations of Finnish spruce (Picea × fennica) and Scotch pine (Pinus sylvestris) located in the northern taiga subzone, as well as two peripheral populations of pine and spruce growing at the northern margin of the distribution area of these species in the transitional forest–tundra zone (Fig. 1 and Table 1). When selecting objects for research based on a complex of forest indicators, the category of forest biogeocenosis (plantation) was determined. Dendrocenoses resulting from natural processes, after certain natural catastrophic events of varying intensity and which did not experience a strong anthropogenic impact, belonged to the category of “indigenous low disturbance.” The presence of traces of selective felling of low intensity in this case was considered acceptable. Forest stands formed after total anthropogenic disturbance (clear felling) due to preliminary and subsequent natural regeneration were characterized as “secondary forest stand”.

 

Fig. 1. Schematic map of locations of P. sylvestris and P. x fennica sample collection points in Karelia. Point names are given in accordance to Table 1

 

Table 1

Characteristics of of P. sylvestris and P. x fennica populations investigated

Populations

Location of population

Geographical coordinates (degrees N/W)

Forest category

Stand age, years

P. x fennica

Pasvik_Е1

М*, Pechenga district

69.27669/29.40130

Climax virgin

>180

Murmansk_Е2

М, Kolsky District

68.87333/33.24000

Secondary

>100

Paanajarvi_Е3

K**, Loukhsky District

66.30634/30.44258

Climax virgin

>200

Paanajarvi_Е4

K, Loukhsky District

66.30093/30.45887

Climax virgin

>200

Kivakka_Е5

K, Loukhsky District

66.20677/30.53473

Climax virgin

>140

Kivakka_Е6

K, Loukhsky District

66.20574/30.53897

Not defined (mountain tundra)

>100

Pongoma_Е7

K, Loukhsky District

65.33901/34.40335

Climax virgin

>120

Pongoma_Е8

K, Kemsky District

65.35168/34.36869

Climax virgin

>140

Pezhostrov_Е9

K, Kemsky District

65.33981/34.47903

Climax virgin

>160

P. sylvestris

Pasvik_С1

M, Pechenga District

68.99571/28.98872

Climax virgin

>140

Murmansk_С2

M, Kola District

68.89139/33.33194

Secondary

>80

Alakurtti_С3

M, Kandalakshsky District

66.95278/29.61083

Climax virgin

>180

Gridino_С4

K, Kemsky District

65.96686/34.65734

Climax virgin

>180

Pyaozero_С5

K, Loukhsky District

65.94450/31.08857

Climax virgin

>140

Voynitsa_С6

K, Kalevalsky District

65.15505/30.19625

Climax virgin

>120

Maslozero_С7

K, Medvezhyegorsky District

63.52453/32.78677

Climax virgin

>240

Note. * M – Murmansk region; ** K – Republic of Karelia.

 

Permanent sample plots (PSP, Fig. 1) were established in natural pine forests and spruce forests within the western part of the White Sea catchment basin (northern taiga subzone of Karelia and Murmansk oblast). Table 1 presents the characteristics of the populations.

To analyze the genetic structure of the populations, samples of needles or wood (cores) were obtained from 30 model trees at each PTP. Spruce and pine genomic DNA samples were isolated using a standard kit (QIAGEN). Microsatellite analysis of Finnish spruce was performed at five nuclear loci, namely, UAPgTG25, UAPgAG105, UAPgAG150, EATC2C06, and EATC2C10 [6, 7]. For the analysis of Scotch pine populations, four loci were selected: PtTX2123, PtTX2146, SPAC11,8, and SPAC12,5 [8, 9]. The characteristics of microsatellite primers used for DNA amplification are presented in Table 2. For the polymerase chain reaction, 26 μl of the reaction mixture (50 ng of DNA of the test samples, 100 pM primer, and 5 μl of a kit with Taq DNA polymerase) was used. Amplification conditions included denaturation for 30 s at 94 °C, annealing for 30 s at 53 °C–62 °C (depending on the primer used), polymerization for 40 s at 72 °C; 35 cycles; and completion of fragments for 6 min at 72 °C. Amplification was performed on a MaxyGene Gradient (QIAGEN) tool. Separation and determination of DNA fragments were carried out using a capillary electrophoresis system on a CEQ 8000 device (Beckman Coulter).

 

Table 2

Parameters of microsatellite primers used to analyzing populations pine and spruce

Locus

Motif

Annealing temperature, t, °C

Number of alleles

Size of fragment, bp

P. x fennica

UAPgTG25

(TG)27

62

8

100–116

UAPgAG150

(AG)11

54

4

160–166

UAPgAG105

(AG)19

56

8

144–158

EATC2C06

(CAT)7

58

10

136–166

EATC1C10

(GA)8

53

4

150–159

P. sylvestris

Spac11,8

(TG)16

55

13

132–160

Spac12,5

(GT)20(GA)10

54

29

129–199

PtTX2123

(AGC)8

57

3

192–201

PtTX2146

(GAG)5…(GAG)8CGG(GAG)7CGG(GAG)4

57

13

180–249

 

Average number of alleles per locus, average effective number of alleles, observed and expected heterozygosities, inbreeding coefficient (Wright fixation index), unbiased-genetic-distance measures [10] and Wright’s FIT, F1S and FST statistics were calculated with the GenAlEx 6.5 program [11]. Dendrograms of the similarity between pine and spruce populations were constructed using the POPTREE program [12].

RESULTS

Finnish spruce. Analysis of the genetic structure of the Finnish spruce populations showed that all the microsatellite loci used were polymorphic. A total of 34 alleles were identified (Table 3).

 

Table 3

Genetic structure of P. x fennica populations, expressed in frequency of occurrence of alleles

Locus

Allele

Populations

Е1*

Е2

Е3

Е4

Е5

Е6

Е7

Е8

Е9

Sample size

19

20

30

31

29

10

30

30

30

UAPgTG25

100

0.000

0.000

0.050

0.016

0.000

0.000

0.000

0.000

0.000

102

0.000

0.050

0.000

0.000

0.000

0.000

0.000

0.000

0.000

104

0.026

0.000

0.950

0.952

0.845

0.900

1.000

1.000

1.000

106

0.605

0.875

0.000

0.000

0.000

0.000

0.000

0.000

0.000

110

0.000

0.000

0.000

0.000

0.000

0.050

0.000

0.000

0.000

112

0.000

0.000

0.000

0.000

0.017

0.000

0.000

0.000

0.000

114

0.079

0.000

0.000

0.016

0.138

0.050

0.000

0.000

0.000

116

0.289

0.075

0.000

0.016

0.000

0.000

0.000

0.000

0.000

UAPgAG105

160

0.711

0.525

0.867

0.984

0.983

1.000

0.983

0.967

0.917

162

0.000

0.050

0.067

0.016

0.000

0.000

0.017

0.000

0.000

164

0.289

0.325

0.067

0.000

0.017

0.000

0.000

0.033

0.083

166

0.000

0.100

0.000

0.000

0.000

0.000

0.000

0.000

0.000

UAPgAG150

144

0.000

0.000

0.733

0.581

0.552

0.850

0.800

0.300

0.317

146

0.868

0.650

0.067

0.048

0.034

0.050

0.017

0.017

0.083

148

0.053

0.350

0.033

0.226

0.241

0.000

0.033

0.000

0.217

150

0.026

0.000

0.000

0.000

0.103

0.000

0.000

0.083

0.033

152

0.000

0.000

0.083

0.000

0.000

0.000

0.000

0.350

0.117

154

0.026

0.000

0.083

0.000

0.000

0.000

0.000

0.150

0.000

156

0.026

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

158

0.000

0.000

0.000

0.145

0.069

0.100

0.150

0.100

0.233

EATC2C06

136

0.000

0.000

0.133

0.065

0.138

0.000

0.100

0.000

0.017

139

0.079

0.325

0.733

0.839

0.724

0.950

0.800

1.000

0.933

142

0.684

0.450

0.000

0.000

0.000

0.000

0.000

0.000

0.000

145

0.158

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

148

0.000

0.100

0.000

0.000

0.000

0.000

0.000

0.000

0.000

151

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.017

154

0.053

0.000

0.000

0.000

0.034

0.050

0.017

0.000

0.033

157

0.000

0.050

0.133

0.081

0.103

0.000

0.067

0.000

0.000

160

0.026

0.050

0.000

0.016

0.000

0.000

0.017

0.000

0.000

166

0.000

0.025

0.000

0.000

0.000

0.000

0.000

0.000

0.000

EATC1C10

150

0.500

0.500

0.833

0.903

0.983

0.450

0.767

0.200

0.783

153

0.500

0.500

0.133

0.097

0.017

0.000

0.050

0.300

0.150

156

0.000

0.000

0.033

0.000

0.000

0.150

0.050

0.200

0.067

159

0.000

0.000

0.000

0.000

0.000

0.400

0.133

0.300

0.000

Note. * Designation of populations in accordance with Fig. 1.

 

The northern taiga populations of Pongoma_E7, Pongoma_E8, and the island Pezhostrov_E9 were monomorphic at the UAPsTG25 locus, the Pongoma_E8 population was also monomorphic at the EATC2C06 locus, and Kivakka_E6 was monomorphic at the UAPgAG105 locus. Almost all spruce populations of the western catchment basin of the White Sea were characterized by the same total number of alleles (16), with the exception of spruce growing on the top of a mountain under mountain tundra conditions (Kivakka_E6) and characterized by their minimum number (12). The peripheral populations of Pasvik_E1 and Murmansk_E2, located at the northern margin of the species habitat, were characterized by the maximum number of alleles detected (18 and 17, respectively). Thus, the studied spruce populations differed both in allelic composition and in the ratio of alleles, with the maximum number revealed in the marginal populations.

The results of the analysis of genetic diversity (including allelic) of Finnish spruce populations are presented in Table 4. In terms of allelic diversity parameters, peripheral populations were generally superior to northern taiga ones (A99% = 3.500 and 3.029, A95% = 2.835 and 2.336, and ne = 1.995 and 1.619, respectively). The observed heterozygosity Hо varied in the northern taiga populations of spruce from 0.127 (Pongoma_E8) to 0.300 (Paanajarvi_E3 and Kivakka_E6), averaging 0.204. According to the level of expected heterozygosity He, the minimum value was revealed for Pongom_E7 (0.221), and the maximum value was found for Pongom_E8 (0.310), with an average of 0.266. The Murmansk populations Pasvik_E1 and Murmansk_E2 were also characterized by the maximum values of the parameters of genetic variability, and the difference between them and the northern taiga populations of spruce in terms of expected and observed heterozygosity was statistically significant (Table 4). Positive values of the Wright fixation index were revealed for all spruce populations, with the exception of Pasvik_E1 and Kivakka_E6; for the populations of Kivakka_E5, Pongoma_E8, and Pezhostrov_E9, the differences were statistically significant [13], which indicated a deficiency of heterozygotes in these populations.

 

Table 4

Indices of genetic diversity in P. x fennica populations

Populations

n

A99 %

A95 %

ne

Ho

He

F

Marginal populations

Pasvik_Е1

19

3.600 ± 0.678

2.600 ± 0.400

1.839 ± 0.152

0.495 ± 0.134

0.439 ± 0.054

–0.126 ± 0.237

Murmansk_Е2

20

3.400 ± 0.748

3.200 ± 0.583

2.151 ± 0.307

0.420 ± 0.169

0.493 ± 0.077

0.109 ± 0.337

Mean

3.500 ± 0.477

2.835 ± 0.367

1.995 ± 0.170

0.457 ± 0.102*

0.466 ± 0.045**

–0.008 ± 0.198

North taiga populations

Paanayarvi_Е3

30

3.200 ± 0.490

2.800 ± 0.374

1.472 ± 0.131

0.300 ± 0.072

0.298 ± 0.064

0.004 ± 0.081

Paanayarvi _Е4

31

3.200 ± 0.490

2.000 ± 0.447

1.436 ± 0.256

0.200 ± 0.067

0.235 ± 0.098

0.045 ± 0.069

Kivakka_Е5

29

3.200 ± 0.583

2.200 ± 0.583

1.574 ± 0.300

0.152 ± 0.053

0.280 ± 0.115

0.258 ± 0.128*

Kivakka _Е6

10

2.400 ± 0.400

2.400 ± 0.400

1.458 ± 0.291

0.300 ± 0.158

0.232 ± 0.105

–0.182 ± 0.085

Pongoma _Е7

30

3.200 ± 0.735

2.200 ± 0.583

1.341 ± 0.134

0.187 ± 0.076

0.221 ± 0.084

0.102 ± 0.129

Pongoma _Е8

30

2.800 ± 0.970

2.400 ± 0.872

2.176 ± 0.706

0.127 ± 0.095

0.310 ± 0.177

0.402 ± 0.213***

Pezhostrov _Е9

30

3.200 ± 0.860

2.400 ± 0.748

1.873 ± 0.658

0.160 ± 0.096

0.283 ± 0.136

0.379 ± 0.176***

Mean

3.029 ± 0.237

2.336 ± 0.254

1.619 ± 0.150

0.204 ± 0.034

0.266 ± 0.040

0.131 ± 0.053

All populations

Mean

3.133 ± 0.212

2.433 ± 0.216

1.702 ± 0.124

0.260 ± 0.038

0.310 ± 0.035

0.096 ± 0.061

Note. N – number of trees studied; A – average number of alleles per locus; A95 % – average number of common alleles per locus; ne – effective number of alleles per locus; Ho and He – observed and expected heterozygosity, respectively (*, ** – statistical significance at р = 0.05; 0.01 between marginal populations and other ones); F – inbreeding oefficient (*, *** statistical significance at р = 0.05; 0.001 between observed and the expected heterozygosity).

 

In general, the studied populations of Finnish spruce were characterized by a low level of genetic diversity at microsatellite loci, although it exceeded that at allozyme loci [14].

Analysis using Wright’s F statistics (Table 5), calculated to characterize subdivisions and assess the level of differentiation between the studied populations within the groups, revealed low Fst values (0.051 and 0.102 for peripheral and northern taiga populations, respectively). The average Fst value for all populations was 0.33. This ratio indicated an extremely high level of genetic differentiation between peripheral and other populations.

 

Table 5

Values of Wright’s F-statistics values for Picea x fennica populations

Loci

F-statistics

FIS

FIT

FST

Marginal populations

UAPgTG25

0.264

0.321

0.077

UAPgAG105

0.097

0.118

0.023

UAPgAG150

0.622

0.656

0.090

EATC2C06

0.296

0.340

0.063

EATC1C10

–1.000

–1.000

0.000

M ± m

0.056 ± 0.277

0.087 ± 0.285

0.051 ± 0.017

North taiga populations

UAPgTG25

0.111

0.166

0.061

UAPgAG105

0.220

0.253

0.042

UAPgAG150

0.261

0.353

0.125

EATC2C06

0.090

0.147

0.062

EATC1C10

0.322

0.471

0.219

M ± m

0.201 ± 0.044

0.278 ± 0.060

0.102 ± 0.032

All populations

M ± m

0.156 ± 0.058

0.432 ± 0.088

0.334 ± 0.078

Note. FIS – inbreeding coefficient of individuals relating to sub-populations; FIT – inbreeding coefficient of individuals relating to a total species population; FST – inbreeding coefficient of sub-populations relating to a total species population.

 

The results of the analysis of the interpopulation differentiation of Finnish spruce in the western part of the White Sea catchment basin were clearly represented as a similarity dendrogram constructed using the UPGMA method based on the Nei genetic distance matrix (Fig. 2). All populations were divided into two groups, namely, northern taiga Karelian and peripheral Murmansk ones. Within these groups, the level of differentiation was relatively low (DN = 0.11 and 0.09 for the Karelian and Murmansk populations, respectively). At the same time, the level of differentiation between the northern taiga and peripheral spruce populations was almost an order of magnitude higher (DN = 0.99). The statistical significance of combining marginal and northern taiga populations into separate groups was confirmed by high bootstrap probabilities (BP = 100%) [15], indicating the genetic isolation of marginal (peripheral) spruce populations.

 

Fig. 2. Dendrogram of the similarity of Karelian populations of P. x fennica according to the Nei genetic distance (DN); bootstrap probabilities BP (%) are indicated in the nodes of the dendrogram

 

Scotch pine. Amplification of four pine microsatellite loci from seven natural populations enabled 60 alleles to be identified (Table 6). The minimum number of alleles identified was found in the populations from the Murmansk region, namely, Pasvik_C1 (peripheral) and Alakurtti_C3 (northern taiga) (30 alleles in each), while the maximum (40) was in the northern taiga Maslozero_C7. Analysis of the main parameters of genetic diversity, including allelic (Table 7), revealed that all Scotch pine populations were characterized by their high values. The northern taiga populations demonstrated a higher level of genetic diversity than the peripheral taiga populations, with the exception of the observed heterozygosity Ho. However, no statistically significant differences were found in the level of genetic variability in the peripheral and northern taiga populations of Scotch pine, which indicated a high degree of homogeneity of the gene pool of the species in the western part of the White Sea catchment basin and its sufficient representation in the marginal Scotch pine populations.

Similar to the case of the Finnish spruce, the Scotch pine populations showed a higher level of expected heterozygosity He compared with the observed heterozygosity Ho. However, the difference was statistically significant only in Pyaozero_C5, indicating a deficiency of heterozygotes in this population. In general, the studied populations of Pinus sylvestris are characterized by a higher level of genetic diversity revealed by microsatellite analysis compared with the data obtained using isozyme analysis for populations from this part of the Scotch pine habitat area [16].

 

Table 6

Genetic structure of populations of P. sylvestris, expressed in the frequency of occurrence of alleles

Locus

Allele

Populations

С1

С2

С3

С4

С5

С6

С7

Sample size

20

21

13

30

30

29

29

PtTX2123

192

0.125

0.048

0.077

0.217

0.250

0.069

0.155

195

0.875

0.952

0.885

0.783

0.750

0.931

0.845

201

0.000

0.000

0.038

0.000

0.000

0.000

0.000

PtTX2146

180

0.000

0.024

0.000

0.017

0.000

0.000

0.000

183

0.175

0.143

0.231

0.200

0.233

0.224

0.190

186

0.000

0.000

0.000

0.000

0.000

0.017

0.000

195

0.125

0.167

0.231

0.133

0.183

0.121

0.172

201

0.000

0.000

0.000

0.017

0.000

0.000

0.000

204

0.025

0.024

0.077

0.100

0.017

0.034

0.000

213

0.000

0.000

0.000

0.000

0.000

0.000

0.017

219

0.000

0.000

0.000

0.000

0.000

0.000

0.017

222

0.425

0.452

0.269

0.383

0.500

0.500

0.500

228

0.150

0.048

0.115

0.067

0.017

0.086

0.052

237

0.025

0.095

0.000

0.017

0.000

0.000

0.000

243

0.075

0.048

0.038

0.000

0.000

0.017

0.017

249

0.000

0.000

0.038

0.067

0.050

0.000

0.034

Spac11.8

132

0.000

0.024

0.000

0.067

0.000

0.103

0.017

134

0.150

0.024

0.077

0.133

0.133

0.017

0.155

136

0.500

0.452

0.346

0.433

0.450

0.362

0.655

138

0.225

0.333

0.423

0.267

0.283

0.207

0.121

140

0.000

0.000

0.038

0.000

0.017

0.052

0.000

142

0.025

0.071

0.000

0.017

0.033

0.000

0.017

144

0.000

0.048

0.038

0.000

0.017

0.121

0.017

146

0.050

0.000

0.000

0.033

0.000

0.000

0.000

148

0.000

0.000

0.000

0.017

0.033

0.103

0.000

150

0.000

0.000

0.000

0.033

0.033

0.034

0.000

154

0.000

0.000

0.077

0.000

0.000

0.000

0.017

158

0.050

0.024

0.000

0.000

0.000

0.000

0.000

160

0.000

0.024

0.000

0.000

0.000

0.000

0.000

Spac12.5

129

0.000

0.000

0.000

0.000

0.033

0.000

0.017

131

0.000

0.000

0.000

0.000

0.033

0.000

0.034

133

0.000

0.000

0.000

0.000

0.033

0.034

0.103

135

0.000

0.000

0.000

0.050

0.017

0.000

0.017

137

0.000

0.000

0.000

0.000

0.033

0.000

0.000

141

0.000

0.000

0.038

0.000

0.017

0.000

0.000

143

0.000

0.000

0.000

0.000

0.017

0.000

0.000

145

0.000

0.024

0.038

0.000

0.000

0.000

0.000

147

0.300

0.119

0.038

0.117

0.050

0.034

0.000

149

0.200

0.024

0.192

0.083

0.100

0.034

0.069

151

0.075

0.190

0.000

0.083

0.017

0.052

0.034

153

0.025

0.095

0.000

0.050

0.000

0.069

0.034

155

0.000

0.048

0.000

0.067

0.183

0.121

0.086

157

0.025

0.024

0.038

0.033

0.050

0.086

0.069

159

0.050

0.095

0.192

0.117

0.017

0.155

0.017

161

0.025

0.048

0.038

0.117

0.167

0.017

0.052

163

0.050

0.071

0.000

0.033

0.033

0.052

0.086

165

0.100

0.095

0.115

0.033

0.000

0.052

0.069

167

0.000

0.024

0.000

0.033

0.000

0.017

0.052

169

0.025

0.024

0.115

0.000

0.033

0.052

0.052

171

0.050

0.000

0.038

0.083

0.017

0.069

0.052

173

0.000

0.000

0.038

0.000

0.033

0.000

0.017

175

0.050

0.000

0.000

0.000

0.000

0.034

0.000

177

0.000

0.095

0.115

0.067

0.050

0.034

0.052

179

0.000

0.000

0.000

0.000

0.000

0.052

0.034

181

0.000

0.000

0.000

0.033

0.033

0.017

0.000

183

0.025

0.024

0.000

0.000

0.033

0.017

0.000

189

0.000

0.000

0.000

0.000

0.000

0.000

0.034

199

0.000

0.000

0.000

0.000

0.000

0.000

0.017

 

Table 7

Indices of genetic diversity in P. sylvestris populations

Populations

n

A99 %

A95 %

Ne

Ho

He

F

Marginal populations

Pasvik _C1

21

7.000 ± 2.273

3.500 ± 0.645

3.654 ± 1.077

0.512 ± 0.46

0.616 ± 0.140

0.110 ± 0.107

Murmansk _C2

20

8.000 ± 2.449

5.000 ± 1.472

4.367 ± 1.807

0.513 ± 0.164

0.600 ± 0.175

0.126 ± 0.162

Mean

7.500 ± 1.558

4.230 ± 0.833

4.010 ± 0.983

0.512 ± 0.102

0.608 ± 0.104

0.118 ± 0.090

North taiga populations

Alakurtti _C3

13

7.000 ± 1.871

4.000±0.707

4.368 ± 1.441

0.558 ± 0.167

0.643 ± 0.149

0.107 ± 0.151

Gridino _C4

30

8.500 ± 2.661

5.500 ± 1.708

5.455 ± 2.372

0.542 ± 0.132

0.688 ± 0.124

0.179 ± 0.162

Pyaozero _C5

30

9.250 ± 4.110

3.750 ± 0.854

4.715 ± 2.140

0.417 ± 0.135

0.660 ± 0.110

0.333 ± 0.207*

Voynitsa _C6

29

9.000 ± 3.582

5.500 ± 1.708

5.512 ± 2.643

0.474 ± 0.158

0.629 ± 0.174

0.164 ± 0.186

Maslozero _C7

29

9.500 ± 4.052

5.000 ± 2.041

5.774 ± 3.590

0.491 ± 0.114

0.603 ± 0.142

0.156 ± 0.110

Mean

8.650 ± 1.354

4.840 ± 0.756

5.165 ± 1.015

0.496 ± 0.058

0.644 ± 0.057

0.188 ± 0.068

All populations

Mean

8.321 ± 1.054

4.695 ± 0.602

4.835 ± 0.774

0.501 ± 0.049

0.634 ± 0.049

0.168 ± 0.055

Note. * The difference between observed and expected heterozygosity is significant at р < 0,05.

 

The results of the analysis of subdivision and interpopulation differentiation by using Wright’s F statistics are presented in Table 8. The loci PtTX2123 and PtTX2146, in contrast to Spac11.8 and Spac12.5, were characterized by the minimum values of Fis and Fit.

 

Table 8

Values of Wright’s F-statistics values for P. sylvestris populations

Loci

F-статистики

FIS

FIT

FST

PtTX2123

0.003

0.044

0.041

PtTX2146

–0.091

–0.070

0.019

Spac11.8

0.570

0.586

0.037

Spac12.5

0.233

0.264

0.041

M ± m

0.179 ± 0.147

0.206 ± 0.144

0.035 ± 0.005

 

The Fst coefficient, an indicator of subdivision of populations, varied from 0.019 for PtTX2146 to 0.041 for Spac12.5 and PtTX2123, with an average of 0.035. Thus, most of the total genetic variance (96.5%) found based on the study of microsatellite loci accounted for the variability within pine populations. The results of the analysis indicated a low level of interpopulation differentiation of Scotch pine in the studied part of the habitat area and the homogeneity of the gene pool of the species in the western part of the White Sea catchment basin.

These results were confirmed by the similarity dendrogram constructed using the UPGMA method based on the Nei genetic distance matrix (Fig. 3). The main group (DN = 0.04–0.07) included with a significant probability (BP = 100%) all populations of Scotch pine, both peripheral and northern taiga, with the exception of Alakutti_C3, whose genetic distance from the rest of the populations turned out to be maximum (DN = 0.09). One of the reasons for the relatively high genetic isolation of this population may be the small sample size (n = 13).

 

Fig. 3. Dendrogram of the similarity of the Karelian populations of P. sylvestris by the Nei genetic distance (DN); bootstrap probabilities BP (%) are indicated in the nodes of the dendrogram

 

DISCUSSION

Thus, the data obtained on the state of the gene pool of the main forest-forming species, Scotch pine and Finnish spruce in the western part of the White Sea watershed, indicated a higher level of genetic diversity (including allelic) in the studied pine and spruce populations at microsatellite loci compared with these and other coniferous species with the use of isozymes [14, 16–19]. Moreover, the data on the genetic diversity of various pine and spruce species obtained using microsatellite markers indicated higher genetic variability compared with the populations of Scotch pine and Finnish spruce in the western part of the White Sea catchment basin [20–23]. Such level of genetic variability of populations in the studied part of the pine and spruce range at nuclear microsatellite loci can be attributed to several reasons. One of them is the relatively recent (less than 10,000 years ago) dissemination in the postglacial period of the species under consideration in the Arctic zone of the European part of Russia. Another reason may be the peculiarities of the distribution of the genetic diversity of the loci selected among the studied populations of these species.

In the investigated part of the habitat area, a deficiency of heterozygotes was revealed in some populations of both Pinus sylvestris and Picea × fennica (Regel) Kom. This phenomenon is not uncommon for populations of coniferous species [19, 24]. Many publications have noted that such a deficiency is a normal component of the genetic structure of coniferous populations and can be caused by inbreeding due to partial self-pollination, the Wahlund effect, the closely related crossing in the presence of a family spatial structure of forest stands, the presence of null alleles, and other reasons [25–29].

Peripheral populations of both pine (Pasvik_S1, Murmansk_C2) and spruce (Pasvik_E1, Murmansk_E2) growing on the northern border of the habitat areas did not reveal a decrease in genetic diversity in comparison with the northern taiga populations of these species. By contrast, the peripheral spruce populations were characterized by higher values of genetic diversity (including allelic) compared with the northern taiga ones. To date, there is no unified opinion on the level of genetic polymorphism that should be in peripheral (marginal, boundary) populations located on the border of the range. Previous studies confirmed [30, 31] that the level of genetic variability is maximum in the optimum zone and decreases toward the periphery of the species distribution area. However, the results of some studies [32, 33] recorded similar levels of genetic diversity between marginal and central populations.

In recent years, a new hypothesis has emerged, according to which the spatial distribution of the genetic diversity of populations of most species of the boreal zone, including coniferous trees, is mainly due to climatic changes that occurred in the Quaternary period [34]. Peripheral populations located on the northern border of the habitat, which are developing new territories suitable for growth and reproduction due to global warming, may be more adapted to changing conditions than populations on the opposite southern border of the habitat [35].

In our case, considering the data on the increase in the average annual temperature, which occurs especially rapidly in the Arctic zone [36], the high level of genetic variability in peripheral populations may be due to the displacement of the border of the ranges of Scotch pine and Finnish spruce further to the north. This phenomenon is due to more favorable conditions emerging in this territory, as well as the history of the postglacial dissemination of these species mentioned above.

Particular interest in the problem of the state and conservation of genetic resources of boreal tree species is determined by the currently recorded and predicted future influence of global climate change on their genetic diversity [37]. According to studies on this issue, a record-breaking rapid increase in the average annual temperature over the past 100 years has been revealed [38].

Yu.N. Kondrasheva et al. [39] believe that a global increase in the concentration of carbon dioxide in the Earth’s atmosphere will create favorable conditions for the growth, development, and process of photosynthesis of higher plants. Thus, biomass buildup in forests may occur. However, an increase in the surface air temperature may be accompanied with an increase in the frequency of droughts and hot periods, a decrease in precipitation, a violation of the soil hydrological regime, an increase in the frequency of forest fires, and other events unfavorable for plants [40].

Some scientists believe that predicted temperature changes may lead to a shift in the boundaries of climatic zones to the north [39, 41]. Even insignificant temperature fluctuations in the current century have caused changes in the distribution areas of certain species [42]. However, these changes occur slowly. For tree species, the average rate of the habitat displacement is several tens of kilometers per century [41]. Thus, the shift in vegetation zones will lag behind climatic changes. There is also a delay in the response of forest ecosystems to climatic changes, which can range from tens to hundreds of years [41].

Notably, climatic changes strongly affect the species adapted to certain habitats. Such species are often characterized by a lower level of genetic diversity than species occupying an area with a wide range of ecological conditions [43]. At the same time, forest ecosystems, including such widespread species as Pinus sylvestris and Picea abies (including P. oeffic and hybrid spruce P. x fennica), have large tolerance ranges that enable them to tolerate adverse environmental influences. The above-described negative consequences of global climate change are related to the southern boundaries of the ranges of boreal species, whereas warming at the northern margin of distribution contributes to an improvement in growing conditions, an increase in seed productivity, an increase in the effective number of peripheral populations, and an increase in genetic diversity.

Nevertheless, to minimize the possible negative consequences of global climate change (violation of the hydrological regime, pests, and diseases, etc.) on forest ecosystems, including on the state of genetic resources of the main forest-forming species, the response reactions of ecosystems to the climatic changes observed must be monitored. This primarily concerns such vulnerable natural systems as the northern taiga forests of the Arctic zone, including pine and spruce forests of the White Sea catchment basin.

As discussed above, the populations of species characterized by a low level of genetic diversity and a sharp decrease in effective abundance have high vulnerability, which can lead to inbreeding (i.e., crossing between closely related trees, resulting in a decrease in the viability of offspring) and local extinction of forest stands. Consequently, one of the main measures to minimize the negative consequences of both anthropogenic impact and climate change on forest ecosystems should be the maintenance of the genetic potential of forest-forming species and the required effective size of their populations by promoting natural renewal and the creation of forest crops. This largely concerns the studied populations of Finnish spruce, which are characterized by great vulnerability due to the average level of their genetic diversity and a high degree of interpopulation differentiation.

The authors express gratitude to PhD (Biology) Director of the Institute of Forest, the Karelian Scientific Center of the Russian Academy of Sciences, A.M. Kryshen and PhD (Agriculture), Deputy Director for Science S.A. Moshnikov for the experimental material provided on peripheral populations of pine and spruce (Pasvik nature reserve).

The study was conducted within the state assignment of the Karelian Scientific Center of the Russian Academy of Sciences and with partial financial support from the Russian Foundation for Basic Research grant No. 18-05-60296.

×

About the authors

Aleksey A. Ilinov

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: ialexa33@yandex.ru
SPIN-code: 2850-3404

PhD, Senior Researcher

Russian Federation, Petrozavodsk

Boris V. Raevsky

Karelian Research Centre of the Russian Academy of Science

Email: borisraevsky@gmail.com
SPIN-code: 2136-7785

Doctor of Science, Senior Researcher, Department of Multidisciplinary Scientific Research

Russian Federation, Petrozavodsk

Olga V. Chirva

Karelian Research Centre of the Russian Academy of Science

Email: tchirva.olga@yandex.ru
SPIN-code: 4755-2713

Junior Researcher, Department of Multidisciplinary Scientific Research

Russian Federation, Petrozavodsk

References

  1. Pachauri RK, Reisinger A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva (CH): IPCC. Intergovernmental Panel on Climate Change; 2008. 104 p.
  2. Чуприян А.П., Веселов И.А., Сорокина И.В., Наумова Т.Е. Мероприятия, проводимые МЧС России по предупреждению и ликвидации чрезвычайных ситуаций в Арктике // Арктика: экология и экономика. – 2013. – № 1. – С. 70–77. [Chupriyan AP, Veselov IA, Sorokina IV, Naumova TE. Meropriyatiya, provodimye MChS Rossii po preduprezhdeniyu I likvidatsii chrezvychainykh situatsii v Arktike. Arktika: ekologiya I ekonomika. 2013;(1):70-77. (In Russ.)]
  3. Лисицын А.П., Немировская И.А. Система Белого моря. Рассеянный осадочный материал гидросферы, микробные процессы и загрязнения. – М.: Научный мир, 2013. – 668 с. [Lisitsyn AP, Nemirovskaya IA. Sistema Belogo tmos. Rasseyannyi osadochnyi material gidrosfery, mikrobnye protsessy I zagryazneniya. Moscow: Nauchnyi mir; 2013. 668 p. (In Russ.)]
  4. Филатов Н.Н., Тержевик А.Ю. Белое море и его водосбор под влиянием климатических и антропогенных факторов. – Петрозаводск: Карельский научный центр РАН, 2007. – 349 с. [Filatov NN, Terzhevik Ayu. Beloe more I ego vodosbor pod vliyaniem klimaticheskikh I antropogennykh faktorov. Petrozavodsk: Karel’skii nauchnyi tsentr RAN; 2007. 349 p. (In Russ.)]
  5. Global plan of action for the conservation, sustainable use and development of forest genetic resources. Commission on Genetic Resources for Food and Agriculture Organization of the United Nations. Rome, Italy; 2014. 32 p.
  6. Hodgetts RB, Aleksiuk MA, Brown A, et al. Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor Appl Genet. 2001;102(8):1252-1258. https://doi.org/10.1007/s00122-001-0546-0.
  7. Scotti I, Magni F, Paglia G, Morgante M. Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet. 2002;106(1):40-50. https://doi.org/10.1007/s00122-002-0986-1.
  8. Elsik CG, Minihan VT, Hall SE, et al. Low-copy microsatellite markers for Pinus taeda L. Genome. 2000;43(3):550-555. https://doi.org/ 10.1139/gen-43-3-550.
  9. Soranzo N, Provan J, Powell W. Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol. 1998;7(9):1260-1261.
  10. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583-590.
  11. Peakall R, Smouse PE. GenALEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006;6(1):288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x.
  12. Takezaki N, Nei M, Tamura K. POPTREEW: Web Version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol Biol Evol. 2014;31(6):1622-1624. https://doi.org/10.1093/molbev/msu093.
  13. Ли Ч.Ч. Введение в популяционную генетику / пер. с англ. Е.А. Салменковой, Е.Я. Тетушкина, под ред. Ю.П. Алтухова, Л.А. Животовского. – М.: Мир, 1978. – 555 с. [Li ChCh. First course in population genetics. Transl. from English E.A. Salmenkova; ed. By E.Ya. Tetushkin, Yu.P. Altukhov, L.A. Zhivotovskiy. Moscow: Mir; 1978. 555 р. (In Russ.)]
  14. Потенко В.В., Ильинов А.А., Гончаренко Г.Г. Изучение генетической дифференциации популяций ели в Карелии с использованием метода изоферментного анализа // Селекция и семеноводство в Карелии. – Петрозаводск: КарНЦ РАН, 1993. – С. 66–76. [Potenko VV, Il’inov AA, Goncharenko GG. Izuchenie geneticheskoi differentsiatsii populyatsii eli v Karelii s ispol’zovaniem metoda izofermentnogo analiza. In: Selektsiya I semenovodstvo v Karelii. Petrozavodsk: KarNTs RAN; 1993. Р. 66-76. (In Russ.)]
  15. Шитиков В.К., Розенберг Г.С. Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. – Тольятти: Кассандра, 2013. – 314 с. [Shitikov VK, Rozenberg GS. Randomizatsiya I butstrep: statisticheskii analiz v biologii I ecologii s ispol’zovaniem R. Tol’yatti: Kassandra; 2013. 314 p. (In Russ.)]
  16. Янбаев Ю.А., Тренин В.В., Шигапов З.Х., и др. Генетическая изменчивость и дифференциация сосны обыкновенной (Pinus sylvestris) на территории Карелии // Сб. стат. «Научные основы селекции древесных растений Севера». Петрозаводск: КарНЦ РАН, 1998. – С. 25–32. [Yanbaev YuA, Trenin VV, Shigapov ZKh, Chistyakov BA, Bakhtiyarova RM. Geneticheskaya izmenchivost’ I differentsiatsiya sosny obyknovennoi (Pinus sylvestris) na territorii Karelii. In: Collected papers: “Nauchnye osnovy selektsii drevesnykh rastenii Severa”. Petrozavodsk: KarNTs RAN; 1998. Р. 25-32. (In Russ.)]
  17. Гончаренко Г.Г., Падутов В.Е., Силин А.Е. Генетическая структура, изменчивость и дифференциация в популяциях Pinus sibirica Du Tour // Генетика. – 1992. – № 28. – C. 114–128. [Goncharenko GG, Padutov VE, Silin AE. Geneticheskaya struktura, izmenchivost’ I differentsiatsiya v populyatsiyakh Pinus sibirica Du Tour. Genetika. 1992;(28):114-128. (In Russ.)]
  18. Кравченко А.Н., Экарт А.К., Ларионова А.Я. Аллозимное разнообразие и дифференциация популяций ели сибирской в западном Забайкалье и Монголии // Хвойные бореальной зоны. – 2012. – Т. 30. – № 1–2. – C. 97–101. [Kravchenko AN, Ekart AK, Larionova Aya. Allozimnoe raznoobrazie I differentsiatsiya populyatsii eli sibirskoi v zapadnom Zabaikal’e I Mongolii. Khvoinye boreal’noi zony. 2012;30(1-2):97-101. (In Russ.)]
  19. Сурсо М.В. Репродуктивная биология и полиморфизм хвойных видов (семейства Pinaceae Lindl., Cupressaceae Rich. Ex Bartl.) Европейского Севера России (Архангельская обл.): Автореф. Дис. … канд. С.-х. наук. – Архангельск, 2013. – 43 с. [Surso MV. Reproduktivnaya biologiya I polimorfizm khvoinykh vidov (semeistva Pinaceae Lindl., Cupressaceae Rich. Ex Bartl.) Evropeiskogo Severa Rossii (Arkhangel’skaya obl.) [dissertation abstract] Arkhangel’sk; 2013. 43 p. (In Russ.)]. Доступно по: https://search.rsl.ru/ru/record/01005545202. Ссылка активна на 15.03.2020.
  20. Экарт А.К., Семерикова С.А., Семериков В.Л., и др. Применение различных типов генетических маркеров для оценки уровня внутривидовой дифференциации ели сибирской // Сибирский лесной журнал. – 2014. – № 4. – C. 84–91. [Ekart AK, Semerikova SA, Semerikov VL, et al. The use of genetic markers of various types for evaluation of intraspecific differentiation level of the tmosphe spruce. Sibirskii lesnoi zhurnal. 2014;(4):84-91. (In Russ).]
  21. Gutkowska J, Borys M, Tereba A, et al. Genetic variability and health of Norway spruce stands in the Regional Directorate of the State Forests in Krosno. Forest Research Papers. 2017;78(1):56-66. https://doi.org/10.1515/frp-2017-0006.
  22. Stojnić S, Avramidou E, Fussi B, et al. Assessment of genetic diversity and population genetic structure of Norway spruce (Picea abies (L.) Karsten) at Its southern lineage in Europe. Implications for conservation of forest genetic resources. Forests. 2019;10(3):258. https://doi.org/10.3390/f10030258.
  23. Tóth EG, Tremblay F, Housset JM, et al. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol Biol. 2019;19(1):190. https://doi.org/10.1186/s12862-019-1510-4.
  24. Петрова Е.А., Горошкевич С.Н., Белоконь М.М., и др. Генетическое разнообразие кедра сибирского Pinus sibirica Du Tour: распределение вдоль широтного и долготного профилей // Генетика. – 2014. – Т. 50. – № 5. – С. 538. [Petrova EA, Goroshkevich SN, Belokon’ MM, et al. Distribution of the genetic diversity of the Siberian stone pine, Pinus sibirica Du Tour, along the latitudinal and longitudinal profiles. Genetika. 2014;50(5):538. (In Russ.)]. https://doi.org/ 10.7868/s0016675814050105.
  25. Hamrick JL, Godt MJ, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. New Forests. 1992;6(1-4): 95-124. https://doi.org/10.1007/bf00120641.
  26. Политов Д.В. Аллозимный полиморфизм, генетическая дифференциация и система скрещивания сибирской кедровой сосны Pinus sibirica Du Tour: Автореф. Дис. … канд. Биол. Наук. – М., 1989. – 19 с. [Politov DV. Allozimnyi polimorfizm, geneticheskaya differentsiatsiya I tmosph skreshchivaniya sibirskoi kedrovoi sosny Pinus sibirica Du Tour. [dissertation abstract] Moscow; 1989. 19 р. (In Russ.)]. Доступно по: https://search.rsl.ru/ru/record/01000002947. Ссылка активна на 15.03.2020.
  27. Politov D. Allozyme polymorphism, heterozygosity, and mating system of stone pines. Proceedings of the International Workshop on Subalpine Stone Pines and Their Environment, the Status of Our Knowledge. 1994:36-42.
  28. Lee S, Choi W, Norbu L, Pradhan R. Genetic diversity and structure of blue pine (Pinus wallichiana Jackson) in Bhutan. Forest Ecol Management. 1998;105(1-3):45-53. https://doi.org/10.1016/s0378-1127(97)00268-5.
  29. Мудрик Е.А., Белоконь М.М., Белоконь Ю.С., Политов Д.В. Применение микросателлитных маркеров в геногеографических исследованиях хвойных // Мат. Всерос. Конф. «Водные и наземные экосистемы: проблемы и перспективы исследований». – Вологда, 2008. – С. 78–81. [Mudrik EA, Belokon’ MM, Belokon’ YuS, Politov DV. Primenenie mikrosatellitnykh markerov v genogeograficheskikh issledovaniyakh khvoinykh. (Conference proceedings) Mat. Vseros. Konf. “Vodnye I nazemnye ekosistemy: tmosph I perspektivy issledovanii”. Vologda; 2008. Р. 78-81. (In Russ.)]
  30. Aitken SN, Libby WJ. Evolution of the Pygmy-Forest Edaphic Subspecies of Pinus contort А across an ecological staircase. Evolution. 1994;48(4):1009-1019. http://doi.org/ 10.1111/j.1558-5646.1994.tb05289.x.
  31. Ledig FT. Founder effects and the genetic structure of Coulter pine. J Hered. 2000;91(4):307-315. https://doi.org/10.1093/jhered/91.4.307.
  32. Hamann A, El-Kassaby YA, Koshy MP, Namkoong G. Multivariate analysis of allozymic and quantitative trait variation in Alnus rubra: geographic patterns and evolutionary implications. Canadian J Forest Research. 1998;28(10):1557-1565. https://doi.org/ 10.1139/x98-135.
  33. Gamache I, Jaramillo-Correa JP, Payette S, Bousquet J. Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: imprint of a founder effect associated with postglacial colonization. Mol Ecol. 2003;12(4):891-901. https://doi.org/10.1046/j.1365-294x.2003.01800.x.
  34. Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci. 2004;359(1442):183-195. https://doi.org/10.1098/rstb.2003.1388.
  35. Hampe A, Petit RJ. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett. 2005;8(5):461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x
  36. Шиятов С.Г., Мазепа В.С., Моисеев П.А., Братухина М.Ю. Изменения климата и их влияние на горные экосистемы национального парка «Таганай» за последние столетия // Влияние изменений климата на экологию охраняемых природных территорий России. Анализ многолетних наблюдений / под ред. А. Кокорина, А. Кожаринова, А. Минина. – М., 2001. – С. 16–31. [Shiyatov SG, Mazepa VS, Moiseyev PA, Bratukhina Myu. Izmeneniya klimata i ikh vliyanie na gornye ekosistemy tmosphe’nogo parka “Taganai” za poslednie stoletiya. In: Vliyanie izmenenii klimata na ekologiyu okhranyaemykh prirodnykh territorii Rossii. Analiz mnogoletnikh nablyudenii. Ed. By A. Kokorin, A. Kozharinov, A. Minin. Moscow; 2001. Р. 16-31. (In Russ.)]
  37. Падутов В.Е., Хотылева Л.В., Баранов О.Ю., Ивановская С.И. Генетические эффекты трансформации лесных экосистем // Экологическая генетика. – 2008. – Т. 6. – № 1. – C. 3–11. [Padutov VE, Khotyleva LV, Baranov Oyu, Ivanovskaya SI. Genetic effects of transformation of forest ecosystems. Ecological genetics. 2008;6(1):3-11. (In Russ.)]
  38. Houghton JT, Meira Filho LG, Callander BA, et al. Climate change 1995. The science of climate change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Xii. Cambridge University Press (CUP). 1996;76(3):836-836. https://doi.org/10.1017/s002531540003157x.
  39. Кондрашева Н.Ю., Кобак К.И., Турчинович И.Е. Возможные реакции наземной растительности на увеличение концентрации СО2 в атмосфере и глобальное потепление // Лесоведение. – 1993. – № 4. – С. 71–76. [Kondrasheva Nyu, Kobak KI, Turchinovich IE. Vozmozhnye reaktsii nazemnoi rastitel’nosti na uvelichenie kontsentratsii SO2 v tmosphere I global’noe poteplenie. Lesovedenie. 1993;(4):71-76. (In Russ.)].
  40. Гитарский М.Л., Карабань Р.Т. Реакция лесных экосистем Европейской части России на изменения климата (по данным многолетних наблюдений в заповедниках) // Влияние изменений климата на экологию охраняемых природных территорий России. Анализ многолетних наблюдений / под ред. А. Кокорина, А. Кожаринова, А. Минина. – М., 2001. – С. 24–27. [Gitarskii ML, Karaban’ RT. Reaktsiya lesnykh ekosistem Evropeiskoi chasti Rossii na izmeneniya klimata (po dannym mnogoletnikh nablyudenii v zapovednikakh). In: Vliyanie izmenenii klimata na ekologiyu okhranyaemykh prirodnykh territorii Rossii. Analiz mnogoletnikh nablyudenii. Ed. By A. Kokorin, A. Kozharinov, A. Minin. Moscow; 2001. Р. 24-27. (In Russ.)]
  41. Величко А.А. Зональные и макрорегиональные изменения ландшафтно-климатических условий, вызванных «парниковым эффектом» // Изв. РАН. Сер. Геогр. – 1992. – № 2. – С. 89–102. [Velichko AA. Zonal’nye i makroregional’nye izmeneniya landshaftno-klimaticheskikh uslovii, vyzvannykh “parnikovym effektom”. Izv. RAN. Ser. Geogr. 1992;(2):89-102. (In Russ.)]
  42. Шиятов С.Г. Климатогенная динамика лесотундровых редколесий и методические подходы к ее изучению // Мат. Симпозиума «Северные леса: состояние, динамика, антропогенное воздействие», Архангельск, 16–26 июля 1990. – М., 1990. – С. 69–71. [Shiyatov SG. Klimatogennaya dinamika lesotundrovykh redkolesii i metodicheskie podkhody k ee izucheniyu. (Conference proceedings) “Severnye lesa: sostoyanie, dinamika, antropogennoe vozdeistvie”; Arkhangelsk, July 16–26, 1990. Moscow; 1990. Р. 69-71. (In Russ.)]
  43. Гончаренко Г.Г., Падутов В.Е. Популяционная и эволюционная генетика елей Палеарктики. – Гомель: ИЛ НаНБ, 2001. – 206 с. [Goncharenko GG, Padutov VE. Populyatsionnaya I evolyutsionnaya genetika elei Palearktiki. Gomel’: IL NaNB; 2001. 206 р. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. Fig. 1. Schematic map of locations of P. sylvestris and P. x fennica sample collection points in Karelia. Point names are given in accordance to Table 1

Download (423KB)
2. Fig. 2. Dendrogram of the similarity of Karelian populations of P. x fennica according to the Nei genetic distance (DN); bootstrap probabilities BP (%) are indicated in the nodes of the dendrogram

Download (61KB)
3. Fig. 3. Dendrogram of the similarity of the Karelian populations of P. sylvestris by the Nei genetic distance (DN); bootstrap probabilities BP (%) are indicated in the nodes of the dendrogram

Download (44KB)

Comments on this article


Copyright (c) 2020 Ilinov A.A., Raevsky B.V., Chirva O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies