Endophytic microorganisms of potato (Solanum tuberosum L.): biodiversity, functions and biotechnological potential

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Endophytic communities represent a fascinating inner world of the plants. Endophytes are found in all plant species studied, though the number of microbial cells and their species diversity can differ a lot. The potato (Solanum tuberosum L.) is economically important staple food crop, and the induction of plant resistance to various infections as well as the search for the effective eco-friendly preparations could provide higher potato yields and are very promising for modern agriculture. In this review, we focus on the biodiversity of the potato endophytes and the aspects of their functional importance and possible application in the biological control of plant pathogens. We have systematized literature data regarding the prevention of the harmful effect of pathogenic fungi, bacteria, viruses, and insects resulting from the vital activity of the endophytic microorganisms within the potato plants.

Full Text

Restricted Access

About the authors

Nazira S. Karamova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: nskaramova@mail.ru
ORCID iD: 0000-0001-5802-9744
SPIN-code: 3828-8883
Scopus Author ID: 6601964566

Cand. Sci. (Biol.), assistant professor

Russian Federation, Kаzan

Ammar A. Tuama

Kazan (Volga Region) Federal University; University of Diyala

Email: ammartuama02@gmail.com
ORCID iD: 0000-0002-8786-5546
SPIN-code: 1357-5255
Scopus Author ID: 57203790731

postgraduate student; teacher

Russian Federation, Kаzan; Baquba, Iraq

Zenon Stasevski

Tatar Institute of Agriculture — Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: zenons@bk.ru
ORCID iD: 0000-0001-9844-0538
SPIN-code: 6562-2911
Scopus Author ID: 56129264200

Cand. Sci. (Biol.), leading research associate

Russian Federation, Kаzan

References

  1. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895–914. doi: 10.1139/m97-131
  2. Xia Y, Liu J, Chen C, et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms. 2022;10(5):1072. doi: 10.3390/microorganisms10051072
  3. Hardoim PR, van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;9(3):293–320. doi: 10.1128/MMBR.00050-14
  4. Srivastava AK, Kashyap LP, Santoyo G, Newcombe G. Editorial: plant microbiome: interactions, mechanisms of action, and applications. Front Microbiol. 2021;12:706049. doi: 10.3389/fmicb.2021.706049
  5. White JF, Kingsley KL, Zhang Q, et al. Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci. 2019;75(10):2558–2565. doi: 10.1002/ps.5527
  6. Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ. 2019;682:779–799. doi: 10.1016/j.scitotenv.2019.04.225
  7. Chebotar’ VK, Shcherbakov AV, Shcherbakova EN, et al. Biodiversity of endophytic bacteria as a promising biotechnological resource. Agricultural Biology. 2015;50(5):648–654. (In Russ.) doi: 10.15389/agrobiology.2015.5.648rus
  8. Vasileva EN, Akhtemova GA, Zhukov VA, Tikhonovich IA. Endophytic microorganisms in fundamental research and agriculture. Ecological genetics. 2019;17(1):19–32. (In Russ.) doi: 10.17816/ecogen17119-32
  9. Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467. doi: 10.3389/fbioe.2020.00467
  10. Birch PRJ, Bryan G. Fenton B, et al. Crops that feed the world: Potato: are the trends of increased global production sustainable. Food Security. 2012;4:477–508. doi: 10.1007/s12571-012-0220-1
  11. Soare E, Chiurciu IA. Study on the dynamics of potato production and worldwide trading during the period 2012–2019. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2021;21:527–532.
  12. FAOSTAT [Internet]. Crops and livestock products [cited 2022 Oct 7]. Available at: www.fao.org/faostat/en/#data/QCL
  13. Rahman MM, Ali ME, Khan AA, et al., Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh. Sci World J. 2012;2012:723293. doi: 10.1100/2012/723293
  14. Wu F, Wang W, Ma Y, et al. Prospect of beneficial microorganisms applied in potato cultivation for sustainable agriculture. Afr J Microbiol Res. 2013;7(20):2150–2158. doi: 10.5897/AJMRx12.00
  15. Enebe MC, Babalola OO. The impact of microbes in the orchestration of plant’s resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol. 2019;103:9–25. doi: 10.1007/s00253-018-9433-3
  16. De Boer SH, Copeman RJ. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot disease. Can J Plant Sci. 1974;54(1):115–122. doi: 10.4141/cjps74-019
  17. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD. Analysis of endophytic bacterial communities of potato by plating and denaturating gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology. 2001;41:369–383. doi: 10.1007/s002480000096
  18. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol. 2002;39(1):23–32. doi: 10.1111/j.1574-6941.2002.tb00903.x
  19. Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol. 2004;50(4):239–249. doi: 10.1139/w03-118
  20. Andreote FD, da Rocha UN, Araujo WL, et al. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwenhoek. 2010;97:389–399. doi: 10.1007/s10482-010-9421-9
  21. van Overbeek L, van Elsas JD. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol. 2008;64(2):283–296. doi: 10.1111/j.1574-6941.2008.00469.x
  22. Тuаmа АА, Karamova NS, Stasecski Z. Comparative analysis of endophytic bacteria in five varieties of potato. Modern Science: actual problems of theory and practice. Series “Natural and Technical Sciences”. 2021;(10):59–63. (In Russ.) doi: 10.37882/2223-2966.2021.10.28
  23. Kõiv V, Roosaare M, Vedler E, et al. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep. 2015;5:11606. doi: 10.1038/srep11606
  24. Kracmarova M, Karpiskova J, Uhlik O, et al. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization. Microorganisms. 2020;8(9):1377. doi: 10.3390/microorganisms8091377
  25. Götz M, Nirenberg H, Krause S, et al. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol. 2006;58(3):404–413. doi: 10.1111/j.1574-6941.2006.00169.x
  26. Tyurin M, Kabilov MR, Smirnova N, et al. Can potato plants be colonized with the fungi Metarhizium and Beauveria under their natural load in agrosystems. Microorganisms. 2021;9(7):1373. doi: 10.3390/microorganisms9071373
  27. Moonjely S, Barelli L, Bidochka MJ. Insect pathogenic fungi as endophytes. Adv Genet. 2016;94:107–135. doi: 10.1016/bs.adgen.2015.12.004
  28. Gray EJ, Smith DL. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem. 2005;37(3):395–412. doi: 10.1016/j.soilbio.2004.08.030
  29. Papik J, Folkmanova M, Polivkova-Majorova M, et al. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv. 2020;44:107614. doi: 10.1016/j.biotechadv.2020.107614
  30. Akosah YA, Vologin SG, Lutfullin MT, et al. Fusarium oxysporum strains from wilting potato plants: Potential causal agents of dry rot disease in potato tubers. Research on Crops. 2021;22:49–53. doi: 10.31830/2348-7542.2021.012
  31. Lastochkina O, Pusenkova L, Garshina D, et al. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with Fusarium dry rot. Plants. 2020;9(6):738. doi: 10.3390/plants9060738
  32. Shcherbakov AV, Shcherbakova EN, Mulina SA, et al. Psychrophilic endophytic pseudomonas as potential agents in biocontrol of phytopathogenic and putrefactive microorganisms during potato storage. Agricultural Biology. 2017;52(1):116–128. (In Russ.) doi: 10.15389/agrobiology.2017.1.116rus
  33. Grossi CE, Fantino E, Serral F, et al. Methylobacterium sp. 2A is a plant growth promoting Rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front Plant Sci. 2020;11:71. doi: 10.3389/fpls.2020.00071
  34. Berg G, Krechel A, Ditz M, et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51(2):215–229. doi: 10.1016/j.femsec.2004.08.006
  35. Stevenson WR, Loria R, Franc GD, Weingartner DP, editors. Compendium of potato diseases. 2nd ed. Saint Paul: American Phytopathological Society Press, 2001.
  36. Rado R, Andrianarisoa B, Ravelomanantsoa S, et al. Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. Afr J Food Agric Nutr Dev. 2015;15(1): 9762–9776. doi: 10.18697/ajfand.68.15005
  37. Elsayed TR, Grosch R, Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbiol Ecol. 2021;97(4):fiab038. doi: 10.1093/femsec/fiab038
  38. Pageni BB, Lupwayi NZ, Akter Z, et al. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci. 2014;94(5):835–844. doi: 10.4141/CJPS2013-356
  39. Shi W, Su G, Li M, et al. Distribution of bacterial endophytes in the non-lesion tissues of potato and their response to potato common scab. Front Microbiol. 2021;12:616013. doi: 10.3389/fmicb.2021.616013
  40. Liu J-M, Wang S-S, Zheng X, et al. Antimicrobial activity against phytopathogens and inhibitory activity on solanine in potatoes of endophytic bacteria isolated from potato tubers. Front Microbiol. 2020;11:570926. doi: 10.3389/fmicb.2020.570926
  41. Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. Atroseptica. Appl Environ Microbiol. 2002;68(5):2261–2268. doi: 10.1128/aem.68.5.2261-2268.2002
  42. Padilla-Gálvez N, Luengo-Uribe P, Mancilla S, et al. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiology. 2021;21:335. doi: 10.1186/s12866-021-02393-x
  43. Podolich O, Laschevskyy V, Ovcharenko L, et al. Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol. 2009;106(3):728–737. doi: 10.1111/j.1365-2672.2008.03951.x.
  44. Ardanov P, Ovcharenko L, Zaets I, et al. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biological Control. 2011;56(1):43–49. doi: 10.1016/j.biocontrol.2010.09.014
  45. Makarova SS, Makarov VV, Taliansky ME, Kalinina NO. Virus resistance in potato: current state and prospects. Russ J Genet Appl Res. 2017;7:845–857. doi: 10.1134/S2079059717050148
  46. Sorokan A, Cherepanova E, Burkhanova G, et al. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say in Solanum tuberosum L. Front Microbiol. 2020;11:569457. doi: 10.3389/fmicb.2020.569457
  47. Sorokan A, Veselova S, Benkovskaya G, Maksimov I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after Colorado potato beetle damage. Plants. 2021;10(5):923. doi: 10.3390/plants10050923
  48. Sorokan AV, Iskandarova ZF, Blagova DK, et al. The role of surfactine produced by endophitic bacteria bacillus subtilis 26d in the development of symbiotic relations with potato plants. Ecobiotech. 2019;2(3): 257–261. (In Russ.) doi: 10.31163/2618-964X-2019-2-3-257-261
  49. Malfanova N, Kamilova F, Validov S, et al. Characterization of Bacillus subtilis HC8, a novel plant beneficial endophytic strain from giant hogweed. Microb Biotechnol. 2011;4(4):523–532. doi: 10.1111/j.1751-7915.2011.00253.x
  50. Maksimov IV, Cherepanova EA, Burkhanova GF, et al. Prospects and applications of lipopeptide-producing bacteria for plant protection (review). Applied Biochemistry and Microbiology. 2020;56(1): 19–34. (In Russ.) doi: 10.31857/S0555109920010134
  51. Lin С, Tsai C-H, Chen P-Y, et al. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018;13(17):1–17. doi: 10.1371/journal.pone.0196520
  52. Pavithra G, Bindal S, Rana M. and Srivastava S. Role of endophytic microbes against plant pathogens: a review. Asian Journal of Plant Sciences. 2020;19:54–62. doi: 10.3923/ajps.2020.54.62
  53. Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011;13(11):2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x
  54. Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Reports. 2021;40: 1471–1494. doi: 10.1007/s00299-021-02687-4
  55. Ludwig-Müller J. Plants and endophytes: equal partners in secondary metabolite production. Biotechnol Lett. 2015;37: 1325–1334. doi: 10.1007/s10529-015-1814-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies