Grassflies of genus Meromyza (Diptera, Chloropidae) and grasses: the evolution of host plant preference

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The present and literature data showed that Meromyza flies developed on grasses from 5 tribes: Poeae, Triticeae, Bromeae, Nardeae, Arundinarieae. The preference of host plants for 25, mainly Western Palaearctic species of Meromyza flies was analyzed: 11 species developed on grasses of the tribe Poeae, 4 – on Triticeae, 9 – on grasses from different tribes, 1 species developed on bamboo. A phylogenetic tree based on the mtDNA CO1 gene locus was constructed in the BEAST for 28 species of Meromyza flies, for 8 species of Drosophila and Campiglossa pygmaea. The host plants were known for 19 species Meromyza flies out of 28 studied species. An overview of the evolution of grasses is given. By the possible time of the genus Meromyza origin (not earlier than the middle of the Miocene), based on the known evolutionary scale of Drosophila, the Pooideae grasses had already been isolated and division into tribes occured. The features of non-specialized phytophage-oligophage (except M. acuminata) confirmed by the wide spectrum of host plants have been supposed for species close to ancestral haplotypes (M. nigriseta, M. pratorum, M. saltatrix, M. variegata) or representing independent branches in their clusters (M. acuminata, M. mosquensis, M. nigriventris). The differentiation of Meromyza genus with formation of new species with narrow oligophagy or monophagy was associated with adaptation to other wild grasses following the formation and increase in the abundance of “core pooids” (Triticodae + Poodae) grasses and the spread of herbal biomes in the Miocene. Oligophages M. nigriventris, M. nigriseta, M. variegata and monophages M. acuminata, M. grandifemoris damage cereal cultivars.


Full Text

Restricted Access

About the authors

Andrey F. Safonkin

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Author for correspondence.
Email: andrej-safonkin@yandex.ru
ORCID iD: 0000-0002-7802-6548

Russian Federation, Moscow

PhD, Scientific Researcher, Laboratory of Plant Genetics

Svetlana V. Goryunova

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: orang2@yandex.ru

Russian Federation, Moscow

PhD, Scientific Researcher, Laboratory of Plant Genetics

Denis V. Goryunov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: denis.goryunov@mail.ru

Russian Federation, Moscow

PhD, Scientific Researcher, Department of Evolutional Biochemistry

Tatiana A. Triseleva

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: triselyova@yandex.ru

Russian Federation, Moscow

PhD, Senior Researcher, Laboratory for Soil Zoology and General Entomology

References

  1. Нарчук Э.П. Злаковые мухи (Diptera: Chloropoidea), их система, эволюция и связи с растениями. Т. 136 // Труды Зоологического института АН СССР / Под ред. О.А. Скарлато. – Л.: Наука, 1987. – 280 с. [Narchuk EP. Zlakovye mukhi (Diptera: Chloropoidea), ikh sistema, ehvolyutsiya i svyazi s rasteniyami. Vol. 136. In: Trudy Zoologicheskogo instituta AN SSSR. Ed. by O.A. Skarlato. Leningrad: Nauka; 1987. 280 p. (In Russ.)]
  2. Федосеева Л.И. Определитель злаковых мух рода Meromyza Meigen, 1830 (Diptera, Chloropidae) фауны России и сопредельных стран // Евразийский энтомологический журнал. – 2003. – Т. 2. – № 2. – С. 145–154. [Fedoseeva LI. A key for Meromyza Meigen, 1830 (Diptera: Chloropidae) from Russia and adjacent countries. Euroasian entomological journal. 2003;2(2):145-154. (In Russ.)]
  3. Бешовски В. Рецентният ареал на род Meromyza Mg. (Diptera, Chloropidae) и неговото историко-географско значение // Acta Zool Bulgarica. – 1986. – № 32. – С. 11–18. [Beshowski V. Review the range of the genus Meromyza Mg. (Diptera, Chloropidae) and negovoto historical and geographical significance. Acta Zool Bulgarica. 1986;(32):11-18. (In Bulgar.)]
  4. Нарчук Э.П., Федосеева Л.И. Обзор злаковых мух рода Meromyza Meigen, 1830 (Diptera, Chloropidae) фауны Палеарктики с определительной таблицей, анализом синонимии, пищевой специализации и географического распространения. Ч. 2 // Энтомологическое обозрение. – 2011. – Т. 90. – № 2. – С. 442–463. [Nartshuk EP, Fedoseeva LI. Review of grassflies of the genus Meromyza Meigen, 1830 (Diptera, Chloropidae) of the Palearctic fauna with a key to species, analysis of the synonymy, host specialization and geographical distribution. Part 2. Entomological Review. 2011;91: 778-795. (In Russ.)]. https://doi.org/org/ 10.1134/S001387381106011X.
  5. Пантелеева Н.Ю. Злаковые мухи (Diptera, Chloropidae) Центрального Черноземья: (Фауна, некоторые экологические особенности): Автореф. дис. … канд. биол. наук. – Л., 1989. – 20 с. [Panteleeva NYu. Zlakovye mukhi (Diptera, Chloropidae) Tsentral’nogo Chernozem’ya: (Fauna, nekotorye ehkologicheskie osobennosti). [dissertation abstract] Leningrad; 1989. 20 p. (In Russ.)]
  6. Нарчук Э.П., Пантелеева Н.Ю. Новые данные о трофических связях личинок злаковых мух-фитофагов в подсем. Chloropinae (Diptera, Chloropidae) в Среднем Подонье // Энтомологическое обозрение. – 2015. – Т. 94. – № 3. – С. 651–659. [Nartshuk EP, Panteleeva NYu. New data on host associations of herbivorous flies of the subfamily chloropinae (Diptera, Chloropidae) in the Middle Don region. Entomological Review. 2015;95(7):891-896. (In Russ.)]. https://doi.org/10.1134/S0013873815070076.
  7. Цвелев Н.Н. Система злаков (Poaceae) и их эволюция. – Л.: Наука, 1987. – 73 с. [Tsvelev NN. Sistema zlakov (Poaceae) i ikh evolutsiya. Leningrad: Nauka; 1987. 73 p. (In Russ.)]
  8. Белюченко И.С. Происхождение и эволюция злаков и методы изучения их биоморфологии // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. – 2014. – № 96. – С. 193–211. [Belyuchenko IS. Origin and evolution of cereals and methods of studying their biomorphology. Politematicheskii setevoi ehlektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2014;(96):193-211. (In Russ.)]
  9. Strömberg CA. Evolution of grasses and grassland ecosystems. Annu Rev Earth Pl Sc. 2011; 39(1):517-544. https://doi.org/org/10.1146/ annurev-earth-040809-152402.
  10. Авдеев В.И. Этапы формирования степных ландшафтов в Евразии. 1. Общие аспекты проблемы // Известия Оренбургского государственного аграрного университета. – 2008. – № 2. – С. 38–42. [Avdeev VI. Stages of steppe landscapes formation in Euroasia. General aspects of the problem. Orenburg state agrarian university. 2008;(2):38-42. (In Russ.)]
  11. Проханов Я.И. Травянистые равнины и новейшие пустыни, их природа и происхождение. Т. 13 // Проблемы филогении растений: труды Московского общества испытателей природы. Отдел биологический. – М., 1965. – С. 124–154. [Prokhanov YaI. Travyanistye ravniny i noveishie pustyni, ikh priroda i proiskhozhdenie. Vol. 13. Problemy filogenii rastenii: trudy Moskovskogo obshchestva ispytatelei prirody. Otdel biologicheskii. Moscow; 1965. Р. 124-154. (In Russ.)]
  12. Obbard DJ, Maclennan J, Kim KW, et al. Estimating divergence dates and substitution rates in the drosophila phylogeny. Mol Biol Evol. 2012;29(11):3459-3473. https://doi.org/ 10.1093/molbev/mss150.
  13. Сафонкин А.Ф., Триселева Т.А., Яцук А.А., Акентьева Н.А. Эволюция постгонитов у злаковых мух рода Meromyza (Diptera: Chloropidae) // Зоологический журнал. – 2016. – Т. 95. – № 11. – С. 1334–1342. [Safonkin AF, Triseleva TA, Yatsuk AA, Akent’eva NA. Evolution of postgonites in frit flies (Diptera, Chloropidae, Meromyza). Zoologicheskii zhurnal. 2016;96(9):1194-1202. (In Russ.)]. https://doi.org/10.7868/S0044513416090099.
  14. Сафонкин А.Ф., Триселева Т.А., Акентьева Н.А. Распределение злаковых мух (Chloropidae: Meromyza Mg.) в Вологодской области и Восточной Польше // Известия РАН. Серия Биологическая. – 2013. – № 5. – С. 614–623. [Safonkin AF, Triseleva TA, Akent’eva NA. Distribution of frit flies (Chloropidae: Meromyza Mg) in Vologda Oblast and East Poland. Biology Bulletin. 2013;40(5):479-487. (In Russ.)]. https://doi.org/10.7868/S0002332913050147.
  15. Сафонкин А.Ф., Акентьева Н.А., Триселева Т.А. Распределение мух рода Meromyza Mg. (Diptera, Chloropidae) на зерновых культурах Монголии // Российский журнал биологических инвазий. – 2013. – Т. 6. – № 4. – С. 70–77. [Safonkin AF, Akent’eva NA, Triseleva TA. Distribution of Meromyza flies (Diptera, Chloropidae) in the cereal crops of Mongolia. Russian journal of biological invasions. 2014;(5):45-48. (In Russ.)]. https://doi.org/10.1134/S207511171401010X.
  16. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8): 1185-1192. https://doi.org/10.1093/molbev/mss075.
  17. Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philosophical Transactions of the Royal Society B Biological Sciences. 1925;213:21-87. https://doi.org/10.1098/rstb.1925.0002.
  18. Soreng RJ, Peterson PM, Romaschenko K, et al. A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol. 2015; 53(2):117-137. https://doi.org/10.1111/jse. 12150.
  19. Gibson DJ. Grasses and grassland ecology. New York: Oxford University Press; 2009. 305 p. https://doi.org/org/10.1086/650233.
  20. Christin PA, Spriggs E, Osborne CP, et al. Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol. 2014;63(2):153-165. https://doi.org/org/10.1093/sysbio/syt072.
  21. Prasad V, Strömberg CA, Leaché AD, et al. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat Commun. 2011;2:480. https://doi.org/org/ 10.1038/ncomms1482.
  22. Pimentel M, Escudero M, Sahuquillo E, et al. Are diversification rates and chromosome evolution in the temperate grasses (Pooideae) associated with major environmental changes in the Oligocene-Miocene? Peer J. 2017;5: e3815. https://doi.org/org/10.7717/peerj.3815.
  23. Strömberg CA. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc Natl Acad Sci USA. 2005;102(34):11980-11984. https://doi.org/org/10.1073/pnas.0505700102.
  24. Rowan RG, Hunt JA. Rates of DNA change and phylogeny from the DNA sequences of the alcohol dehydrogenase gene for five closely related species of hawaiian drosophila. Mol Biol Evol. 1991;8(1):49-70. https://doi.org/10.1093/oxfordjournals.molbev.a040636.
  25. Tamura K, Subramanian S, Kumar S. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 2004;21(1):36-44. https://doi.org/10.1093/molbev/msg236.
  26. Yeates DK, Wiegmann BM, Courtney GW, et al. Phylogeny and systematics of Diptera: two decades of progress and prospects. Zootaxa. 2007;1668(1):565-590. https://doi.org/ 10.11646/zootaxa.1668.1.27.
  27. Родендорф Б.Б. Историческое развитие двукрылых насекомых. Т. 100 // Труды Палеонтологического института. – М.: Наука, 1964. – 313 с. [Rhodendorf BB. Istoricheskoe rasvitie dvukrylykh nasekomykh. Vol. 100. In: Trudy Paleontologicheskogo instituta. Moscow: Nauka; 1964. 313 р. (In Russ.)]
  28. Thomas JA, Welch JJ, Lanfear R, et al. A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol. 2010;27(5): 1173-1180. https://doi.org/10.1093/molbev/msq009.
  29. Russo CA, Mello B, Frazăo A, et al. Phylogenetic analysis and a time tree for a large drosophilid data set (Diptera: Drosophilidae). Zool J Linnean Society. 2013;169(4):765-775. https://doi.org/10.1111/zoj.12062.
  30. Brower AV. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA Evolution. Proc Natl Acad Sci USA. 1994;91(14):6491-6495. https://doi.org/ 10.1073/pnas.91.14.6491.
  31. Jamnongluk W, Baimai V, Kittayapong P. Molecular phylogeny of tephritid fruit flies in the Bactrocera tau complex using the mitochondrial COI sequences. Genome. 2003;46(1):112-118. https://doi.org/10.1139/g02-113.
  32. Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: the mid-aegean trench calibration. Mol Biol Evol. 2010;27(7):1659-1672. https://doi.org/10.1093/molbev/msq051.
  33. Spriggs EL, Christin P-A, Edwards EJ. C4 photosynthesis promoted species diversification during the miocene grassland expansion. PLoS One. 2014;9(5): e97722. https://doi.org/org/10.1371/journal.pone.0097722.
  34. Matthee CA, Davis SK. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Mol Biol Evol. 2001;18(7): 1220-1230. https://doi.org/org/10.1093/oxfordjournals.molbev.a003908.
  35. Bouchenak-Khelladi Y, Verboom GA, Hodkinson TR, et al. The origins and diversification of C4 grasses and savanna-adapted ungulates. Global Change Biol. 2009;15(10):2397-2417. https://doi.org/org/10.1111/j.1365-2486.2009.01860.x.
  36. Яцук А.А., Сафонкин А.Ф. Закономерности изменения формы постгонитов у мух рода Meromyza (Diptera, Chloropidae) // Журнал общей биологии. – 2018. – Т. 79. – № 1. – С. 18–27. [Yatsuk AA, Safonkin AF. Trends in the changes of the postgonites in the frit fly genus Meromyza (Diptera, Chloropidae). Zhurnal obshchey biologii. 2018;79(1):18-27. (In Russ.)]
  37. Matsuoka Y. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011;52(5):750-764. https://doi.org/org/10.1093/pcp/pcr018.
  38. Fu YB. Oat evolution revealed in the maternal lineages of 25 Avena species. Sci Rep. 2018;8(1):4252. https://doi.org/org/10.1038/s41598-018-22478-4.
  39. Федосеева Л.И. К экологии злаковых мух Meromyza (Diptera: Chloropidae) в Московской области // Зоологический журнал. – 1961. – Т. 40. – № 8. – С. 1205–1213. [Fedoseeva LI. K ehkologii zlakovykh mukh Meromyza (Diptera: Chloropidae) v Moskovskoi oblasti. Zoologicheskii zhurnal. 1961;40(8):1205-1213. (In Russ.)]
  40. Нарчук Э.П., Федосеева Л.И. Злаковые мухи рода Meromyza Mg. (Diptera, Chloropidae) в фауне Монгольской Народной Республики. Вып. 8 // Насекомые Монголии: сборник статей. – Л.: Наука, 1982. – С. 454–482. [Nartshuk EP, Fedoseeva LI. Zlakovye mukhi roda Meromyza Mg. (Diptera, Chloropidae) v faune Mongol’skoi Narodnoi Respubliki. Issue 8. Nasekomye Mongolii: sbornik statei. Leningrad: Nauka; 1982. Р. 454-482. (In Russ.)]

Supplementary files

Supplementary Files Action
1.
Phylogenetic tree of representatives of the genera Campiglossa, Drosophila, and Meromyza, built based on the sequence of the mtDNA COI gene fragment in the BEAST v1.10.4 program. The numbers in the nodes indicate the number of replacements per site. The species that gave the name to the meromiz clusters are underlined. The clusters are indicated by vertical lines. Designation of Meromiz species according to their food specialization: A - develop on species of the tribe Poeae belonging to the Chloroplast group I (type Aveneae), P - on species of the tribe Poeae belonging to the Chloroplast group II (type Poeae), T - develop on species of the tribe Triticeae , B - on species of the tribe Bromeae, N - Nardeae, * - feed on wheat,? - possibly on oats

Download (126KB) Indexing metadata

Statistics

Views

Abstract - 26

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2021 Safonkin A., Goryunova S., Goryunov D., Triseleva T.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies