The expansin gene NtEXPA5 increases stress tolerance of tobacco hairy roots through an effect on the antioxidant system

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Background: Expansins are non-enzymatic proteins involved in the softening of cell walls, the mechanism of action of which is associated with the weakening and breaking of hydrogen bonds between xyloglucans and cellulose microfibrils and is aimed at ensuring cell expansion.

The aim of our work was to obtain hairy roots of tobacco with constitutive expression of the NtEXPA5 expansin gene, their morphometric analysis and assessment of the state of their antioxidant system in response to stress factors.

Materials and methods: The hairy roots were obtained from transgenic tobacco plants expressing the NtEXPA5 gene under the control of the 35S promoter.

Results: Constitutive expression of the NtEXPA5 gene promoted an increase in the length and dry weight of hairy roots both under normal conditions and under the action of salinity, copper sulfate, cadmium acetate, and mannitol. Both under normal conditions and under the action of stress factors in transgenic hairy roots, an increase in the activity of superoxide dismutase and the total antioxidate activity was recorded.

Conclusion: Expansins exert their positive effect on the productivity and stress tolerance of plants not only through their influence on cell expansion, but also through the effect on the antioxidant system.


Full Text

Restricted Access

About the authors

Bulat R. Kuluev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State University

Author for correspondence.
Email: kuluev@bk.ru
ORCID iD: 0000-0002-1564-164X
SPIN-code: 8580-5347
Scopus Author ID: 23094029400
ResearcherId: N-3927-2016

Russian Federation, 71 October Av., 450054 Ufa; Ufa

Dr. Sci. (Biol.)

Khalit G. Musin

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: khalit.musin@yandex.ru
ORCID iD: 0000-0001-7336-2027
SPIN-code: 8966-4290
ResearcherId: P-2298-2017

Russian Federation, 71 October Av., 450054 Ufa

Junior Researcher, Laboratory of Plant Genomics

Alfira B. Yakupova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State University

Email: alfiram@yandex.ru
SPIN-code: 1480-4353
Scopus Author ID: 36344236800

Russian Federation, 71 October Av., 450054 Ufa; Ufa

Cand. Sci. (Biol.)

References

  1. Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–172. doi: 10.1016/j.pbi.2015.05.014
  2. Lin C, Choi HS, Cho HT. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cell. 2011;31:393–397. doi: 10.1007/s10059-011-0046-2
  3. Kuluev BR, Berezhneva ZA, Mikhaylova EV, Chemeris AV. Growth of transgenic tobacco plants with changed expression of genes encoding expansins under the action of stress factors. Russian Journal of Plant Physiology. 2018;65(2):211–221. doi: 10.1134/S1021443718020036
  4. Zhao MR, Li F, Fang Y, et al. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma. 2011;248:313–323. doi: 10.1007/s00709-010- 0172-2
  5. Xu Q, Xu X, Shi Y, et al. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLOS One. 2014;8: e100792. doi: 10.1371/journal.pone.0100792
  6. Kuluev BR, Avalbaev AM, Mikhaylova EV, et al. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response. J Plant Physiol. 2016;206:1–12. doi: 10.1016/j.jplph.2016.09.001
  7. Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV. Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Rus J Devel Biol. 2013;44:28–34. doi: 10.1134/S1062360413010049
  8. Gumerova GR, Chemeris AV, Nikonorov YuM, Kuluev BR. Morphological and molecular analysis of isolated cultures of tobacco adventitious roots obtained by the methods of biolistic bombardment and Agrobacterium-mediated transformation. Russian Journal of Plant Physiology. 2018;65(5):740–749. doi: 10.1134/S1021443718050072
  9. Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol. 1985;5(2):69–76. doi: 10.1007/BF00020088
  10. Duncan DB. Multiple range and multiple F-test. Biometrics. 1955;11:1–5. doi: 10.2307/3001478
  11. Chevari S, Chaba I, Sekei I. Rol’ superoksiddismutazy v okislitel’nykh protsessakh kletki i metod opredeleniya ee v biologicheskikh materialakh. Laboratornoe delo. 1985;(11):678–681. (In Russ.)
  12. Ermakov AI, Arisimovich VV, Yarosh NP. Metody biokhimicheskogo issledovaniya rastenii. A.I. Ermakova, ed. 3 izd., pererab. i dop. Leningrad: Agropromizdat; 1987. 430 p.
  13. Panchuck II, Volkov RA, Schoff F. Heat stress and heat shock transcription factor-depend expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physol. 2002;129:838–853. doi: 10.1104/pp.001362
  14. Boestfleisch C, Wagenseil NB, Buhmann AK, et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants. 2014;(13):6–12. doi: 10.1093/aobpla/plu046
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999
  16. Guimaraes LA, Pereira BM, Araujo ACG, et al. Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods. 2017;13:25. doi: 10.1186/s13007-017-0176-4
  17. Sosa ALG, Agostini E, Medina MI. Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment. Plant Physiol Biochem. 2011;49(9):1020–1028. doi: 10.1016/j.plaphy.2011.07.009
  18. Wang L, Chen Q, Xin D, et al. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric. 2018;17(9):1959–1971. doi: 10.1016/S2095-3119(17)61863-X
  19. Han Y, Chen Y, Yin S, et al. Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol. 2015;173:62–71. doi: 10.1016/j.jplph.2014.09.007
  20. Li AX, Han YY, Wang X, et al. Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot. 2015;110:73–84. doi: 10.1016/j.envexpbot.2014.10.002
  21. Jadamba C, Kang K, Paek NC, et al. Overexpression of rice expansin 7 (Osexpa 7) confers enhanced tolerance to salt stress in rice. Int J Moc Sci. 2020;21(2):454. doi: 10.3390/ijms21020454
  22. Chen Y, Han Y, Zhang M, et al. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One. 2016;11(4): e0153494. doi: 10.1371/journal.pone.0153494
  23. Yang J, Zhang G, An J, et al. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Sci: Int J Exp Plant Biol. 2020;298:110596. doi: 10.1016/j.plantsci.2020.110596
  24. Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Sci. 2004;9(11):534–540. doi: 10.1016/j.tplants.2004.09.002

Supplementary files

Supplementary Files Action
1.
Fig. 1. Morphometric analysis of hairy roots with constitutive expression of the NtEXPA5 gene: a - root growth in length for 30 days of cultivation; b - dry weight of roots after 30 days of cultivation. WT - wild type (control), E1 – E-6 - HRs lines. Asterisks indicate significant differences from control according to Duncan's test (p <0.05)

Download (263KB) Indexing metadata
2.
Fig. 2. Analysis of the antioxidant system of hairy root cultures with constitutive expression of the NtEXPA5 gene: a - activity of superoxide dismutase; b - catalase activity; c - peroxidase activity; d is the total antioxidant activity. Asterisks indicate significant differences from control according to Duncan's test (p <0.05)

Download (216KB) Indexing metadata

Statistics

Views

Abstract - 115

PDF (Russian) - 6

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2021 Kuluev B.R., Musin K.G., Yakupova A.B.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies