Creation of an inducible vector system based on the rhizobia nodA gene promoter

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background: The possibility of changing the properties of rhizobial bacteria by giving them the ability to regulate the expression of additionally introduced genes into them is an urgent task both for fundamental science and for applied agrobiology, since this will make it possible to obtain microsymbionts with desired properties. An expression construct using the rhizobia regulatory system was created in this work. The rhizobia nodD gene encodes a regulatory protein that, in the presence of plant inducers, flavonoids, activates the transcription of nod-genes involved in the early stages of the formation of legume-rhizobium symbiosis.

Materials and methods: A vector construct containing the nodD gene from Rhizobium leguminosarum bv. trifoli under the regulation of its own promoter and the gfp gene under the regulation of the nodA gene promoter from the same rhizobia was obtained. Neorhizobium galegae CIAM 0702 were transformed with the vector construct.

Results: It has been shown that in recombinant strains synthetic flavonoids are capable of inducing expression of gfp gene to varying degrees.

Conclusion: In the future, the results can be used to obtain rhizosphere microorganisms with a controlled synthesis of growth-stimulating and protective substances.

Full Text

Restricted Access

About the authors

Olga V. Chubukova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
ORCID iD: 0000-0001-7553-9527
SPIN-code: 3297-4830
ResearcherId: A-3397-2014

Russian Federation, 71 October Av., 450054 Ufa

PhD, Cand. Sci. (Biol.), Researcher

Zilya R. Vershinina

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

ORCID iD: 0000-0001-5480-5320
SPIN-code: 1866-7896

Russian Federation, 71 October Av., 450054 Ufa

PhD, Cand. Sci. (Biol.), Researcher

Rustam T. Matnyazov

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

SPIN-code: 6798-7913

Russian Federation, 71 October Av., 450054 Ufa

PhD, Cand. Sci. (Biol.)

Andrey K. Baymiev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

ORCID iD: 0000-0001-6637-9365
SPIN-code: 1919-5236

Russian Federation, 71 October Av., 450054 Ufa

PhD, Cand. Sci. (Biol.)

Aleksey K. Baymiev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

ORCID iD: 0000-0003-0606-6740
SPIN-code: 3771-4063

Russian Federation, 71 October Av., 450054 Ufa

PhD, Cand. Sci. (Biol.), Head of Laboratory


  1. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, et al. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5(4):355–377. doi: 10.1007/s13205-014-0241-x
  2. Bajmiev AnH, Gumenko RS, Vladimirova AA. et al. Artificial activation of nif gene expression in nodule bacteria ex planta. Ecological genetics. 2019;17(2):35–42. (In Russ.) doi: 10.17816/ecogen17235-42.
  3. Vershinina ZR, Khakimova LR, Lavina AM, et al. Effect of constitutive expression of the rapA1 gene on formation of bacterial biofilms and growth-stimulating activity of rhizobia. Microbiology. 2019;88(1):54–62. (In Russ.) doi: 10.1134/s0026365619010105
  4. Clua J, Roda C, Zaneti ME, Blanco FA. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen fixing symbiosis. Genes (Basel). 2018;9(3):125. doi: 10.3390/genes9030125
  5. Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci. 2017;18(4):705. doi: 10.3390/ijms18040705
  6. Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2020;13(5):1314–1335. doi: 10.1111/1751-7915.13517
  7. Liu C-W, Murray JD. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants-Basel. 2016;5(3):33. doi: 10.3390/plants5030033
  8. Fauvart M, Michiels J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett. 2008;285(1):1–9. doi: 10.1111/j.1574-6968.2008.01254.x
  9. Jiménez-Guerrero I, Acosta-Jurado S, Del Cerro P, et al. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel). 2017;9(1):1. doi: 10.3390/genes9010001
  10. Hu H, Liu S, Yang Y, et al. In Rhizobium leguminosarum, NodD represses its own transcription by competing with RNA polymerase for binding sites. Nucleic Acids Res. 2000;28(14):2784–2793. doi: 10.1093/nar/28.14.2784
  11. Rossen L, Shearman CA, Johnston AWB, Downiel JA. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes. EMBO J. 1985;4(13A):3369–3373. doi: 10.1002/j.1460-2075.1985.tb04092.x
  12. Spaink HP, Okker RJ, Wijffelman CA, et al. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol. 1987;9(1):27–39. doi: 10.1007/BF00017984
  13. Begum AA, Leibovitch S, Migner P, Zhang F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot. 2001;52(360):1537–1543. doi: 10.1093/jexbot/52.360.1537
  14. Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res. 2010;165(1): 50–60. doi: 10.1016/j.micres.2008.06.002
  15. Spaink HP, Wijffelman CA, Pees E, et al. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature. 1987;328:337–340. doi: 10.1038/328337a0
  16. Suominen L, Luukkainen R, Roos C, Lindström K. Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate. FEMS Microbiol Lett. 2003;219(2):225–232. doi: 10.1016/s0378-1097(02)01206-5
  17. Hugria M, Jonston AWB, Phillips DA. Effects of flavonoids release naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant Microbe Interact. 1992;5(3):199–203. doi: 10.1094/mpmi-5-199
  18. Dakora FD, Joseph CM, Phillips DA. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 1993;101(3):819–824. doi: 10.1104/pp.101. 3.819
  19. Janczarek M, Urbanik-Sypniewska T, Skorupska А. Effect of authentic flavonoids and the exudate of clover roots on growth rate and inducing ability of nod genes of Rhizobium leguminosarum bv. trifolii. Microbiol Res. 1997;152(1):93–98. doi: 10.1016/s0944-5013(97)80028-6
  20. Feng J, Li Q, Hu HL, et al. Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res. 2003;31(12): 3143–3156. doi: 10.1093/nar/gkg411
  21. Stacey G. Bradyrhizobium japonicum nodulation genetics. FEMS Microbiol Lett. 1995;127(1-2):1–9. doi: 10.1111/j.1574-6968.1995.tb07441.x
  22. Suominen L, Roos C, Lortet G, et al. Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol. 2001;18(6):907–916. doi: 10.1093/oxfordjournals.molbev.a003891
  23. Lin JJ. Electrotransformation of Agrobacterium. Methods Mol Biol. 1995;47:171–178. doi: 10.1385/0-89603-310-4:171.
  24. Mongiardini EJ, Ausmees N, Perez-Gimenez J, et al. The Rhizobial adhesion protein RapA1 is involved in adsorption of Rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol. 2008;65(2):279–288. doi: 10.1111/j.1574-6941.2008.00467.x
  25. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76(9): 4350–4354. doi: 10.1073/pnas.76.9.4350
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673.
  27. Osterman J, Chizhevskaja EP, Andronov EE, et al. Galega orientalis is more diverse than Galega officinalis in Caucasus – whole-genome AFLP analysis and phylogenetics of symbiosis-related genes. Mol Ecol. 2011;20(22):4808–4821. doi: 10.1111/j.1365-294x.2011.05291.x.
  28. Machado D, Pueppke SG, Vinardell JM, et al. Expression of nodD1 and nodD2 in Sinorhizobium fredii, a Nitrogen-Fixing Symbiont of Soybean and Other Legumes. MPMI. 1998;11(5):375–382. doi: 10.1094/mpmi.1998.11.5.375.

Supplementary files

Supplementary Files Action
Fig. 1. Scheme of organization of nod-genes of rhizobia R. leguminosarum bv. trifoli, which control nodule formation

Download (22KB) Indexing metadata
Fig. 2. Scheme for creating constructs with the nodD gene. DNA fragment of R. leguminosarum bv. trifoli containing the sequence of the nodD gene, including the promoter (PnodD) and the promoter region of nodA (PnodA), were amplified with primers containing BglII restriction sites were introduced. Next, the amplificate was cut with the BglII restriction enzyme and cloned at the BamHI site in the pTurboGFP-B vector. From the obtained pTurboNodDGFP construct, the fragment containing nodD + PnodA + gfp was recloned at the XhoI and DraI restriction sites into the pJN105 plasmid of a wide range of hosts. The ultimate genetically engineered design pJNNodDGFP transformed the N. galegae strain of rhizobia CIAM 0702

Download (90KB) Indexing metadata
Fig. 3. Western blot analysis of total protein from N. galegae, transformed with the pJNNodDGFP plasmid under the action of various inducers (flavonoids): 1 - protein markers; 2 - GFP control, E. coli sample with pTurbo GFP-B plasmid; 3 - apigenin; 4 - taxifollin; 5 - genistein; 6 - quercetin; 7 - hesperidin; 8 - N. galegae, with plasmid pJNNodDGFP, without inductor

Download (33KB) Indexing metadata



Abstract - 104

PDF (Russian) - 4


Article Metrics

Metrics Loading ...



Copyright (c) 2021 Chubukova O.V., Vershinina Z.R., Matnyazov R.T., Baymiev A.K., Baymiev A.К.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies