EXPRESSION OF RECOMBINANT RECEPTOR PROTEINS SYM10 AND SYM37 PISUM SATIVUM INVOLVED IN PERCEPTION OF LIPO-CHITOOLIGOSACCHARIDES NOD FACTORS

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


In the legume-Rhizobium interaction Nod factors emanating from rhizobia trigger a complex of specific responses in epidermis, pericycle and root cortex of the plant, thereby providing the basis for subsequent bacterial entry and organogenesis of root nodules. Since Nod factors are biologically active at pico-nanomolar concentrations and their activity depends on Nod factor structural features, it suggests the presence of high affinity receptors to these molecules. Genetic analysis of pea mutants allowed to identify genes that are essential for symbiosis development and among of them the PsSym10 and PsSym37. These genes are predicted to encode LysM-receptor-like kinases with LysM motifs in extracellular domain (LysM-RLKs). These proteins may be potential receptors to Nod factors. However experimental evidence of Nod factor binding to the putative receptors is needed to confirm the biochemical function of receptors. Mainly, it depends on the problems with receiving of membrane receptors. In this work the heterologous expression of SYM10 and SYM37 was conducted in bacterial cells. We have also optimized the conditions for recombinant proteins purification and obtained specific antibodies for next immunoenzyme analysis of two LysM-RLKs in legume plants.

Keywords



About the authors

Elena A Dolgikh

All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, RF

Email: dol2helen@yahoo.com

Irina V Leppyanen

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: leppyanen_irina@rambler.ru

Vladimir A Zhukov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: zhukoff01@yahoo.com

Viktor E Tsyganov

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: viktor_tsyganov@arriam.spb.ru

Igor A Tikhonovich

All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, RF

Email: arriam@arriam.spb.ru. contact@arriam.spb.ru Podbelskiy Ch., 3, Saint-Petersburg, Pushkin-8

References

  1. Ane J.-M., Kiss G. B., Riely B. K. et al., 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes // Science. Vol. 303. P. 1364-1367.
  2. Ardourel M., Demont N., Debelle F. D. et al., 1994. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair-cells and induction of plant symbiotic developmental responses // Plant Cell. Vol. 6. P. 1357-1374.
  3. Ben Amor B., Shaw S. L., Oldroyd G. E. D. et al., 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation // The Plant Journal. Vol. 34. P. 1-12.
  4. Bateman A., Bycroft M., 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD) // J. Mol. Biol. Vol. 299. P. 1113-1119.
  5. Bertani G., 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli // J. Bacteriol. Vol. 62. P. 293-300.
  6. Birkeland N. K., 1994. Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design // Can. J. Microbiol. Vol. 40. P. 658-665.
  7. Borisov A. Y., Barmicheva E. M., Jacobi L. M. et al., 2000. Pea (Pisum sativum L.) mendelian genes controlling development of nitrogen-fixing nodules and arbuscular mycorrhiza // Czech J. Genet. Plant Breed. Vol. 36. P. 106-110.
  8. Catoira R., Galera C., de Billy F. et al., 2000. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway // Plant Cell. Vol. 12. P. 1647-1665.
  9. Catoira R., Timmers A. C. J., Maillet F. et al., 2001. The HCL gene of Medicago truncatula controls Rhizobiuminduced root hair curling // Development. Vol. 128. P. 1507-1518.
  10. Ehrhardt D. W., Atkinson E. M., Long S. R., 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors // Science. Vol. 256. P. 998-1000.
  11. Ehrhardt D. W., Wais R., Long S. R., 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals // Cell. Vol. 85. P. 673-681.
  12. Endre G., Kereszt A., Kevei Z. et al., 2002. A receptor kinase gene regulating symbiotic nodule development // Nature. Vol. 417. P. 962-966.
  13. Heidstra R., Bisseling T., 1996. Nod factor-induced host responses and mechanisms of Nod factor perception // New Phytologist. Vol. 133. P. 25-43.
  14. Imaizumi-Anraku H., Takeda N., Charpentier M. et al., 2006. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots // Nature. Vol. 433. P. 527-531.
  15. Joris B., Englebert S., Chu C. P. et al., 1992. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin // FEMS Microbiol. Lett. Vol. 70. P. 257-264.
  16. Kanamori N., Madsen L. H., Radutoiu S. et al., 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis // Proc. Natl. Acad. Sci. USA. Vol. 103. P. 359-364.
  17. Levy J., Bres C., Geurts R. et al., 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses // Science. Vol. 303. P. 1361-1363.
  18. Limpens E., Franken C., Smit P. et al., 2003. LysM domain receptor kinases regulating rhizobial Nod factor- induced infection // Science. Vol. 302. P. 630-633.
  19. Lombardo F., Heckmann A. B., Miwa H. et al., 2006. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth // Mol. Plant Microbe Interactions. Vol. 19. P. 1444-1450.
  20. Madsen E. B., Madsen L. H., Radutoiu S. et al., 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals // Nature. Vol. 425. P. 637-640.
  21. Miroux B., Walker J. E., 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels // J. Mol Biol. Vol. 260. P. 289-298.
  22. Mitra R. M., Gleason C. A., Edwards A. et al., 2004. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning // Proc. Natl. Acad. Sci.
  23. USA. Vol. 101. P. 4701-4705.
  24. Mulder L., Lefebvre B., Cullimore J., Imberty A., 2006. LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors // Glycobiology. Vol. 16. P. 801- 809.
  25. Oldroyd G. E. D., Long S. R., 2003. Identification and characterization of nodulation-pathway 2, a gene of Medicago truncatula involved in Nod factor // Plant Physiology. Vol. 131. P. 1027-1032.
  26. Radutoiu S., Madsen L. H., Madsen E. B. et al., 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases // Nature. Vol. 425. P. 569- 570.
  27. Radutoiu S., Madsen L. H., Madsen E. B. et al., 2007. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range // EMBO J. Vol. 26. P. 3923-3935.
  28. Roth L. E. and Stacey G., 1991. Rhizobium-legume symbiosis // Microbial Cell-Cell Interactions / Ed. Dworkin M, American Society of Microbiology, Washington, P. 255-301.
  29. Schultze M., Kondorosi A., 1998. Regulation of symbiotic root nodule development // Annu. Rev. Genet. Vol. 32. P. 33-57.
  30. Smit P., Limpens E., Geurts R. et al., 2007. Medicago LYK3, an entry receptor in rhizobial Nod factor // Plant Physiology. Vol. 145. 183-191.
  31. Spaink H. P., Sheeley D. M., van Brussel A. A. N. et al., 1991. A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium // Nature. Vol. 354. P. 125-130.
  32. Spaink H. P., 2000. Root nodulation and infection factors produced by rhizobial bacteria // Annu. Rev. Microbiol. Vol. 54. P. 257-288.
  33. Steinle A., Li P., Morris D. L. et al., 2001. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family // Immunogenetics. Vol. 53. P. 279-287.
  34. Tsyganov V. E., Voroshilova V. A., Priefer U. B. et al., 2002. Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium- pea (Pisum sativum L.) symbiosis // Annals of Botany. Vol. 89. P. 357-366.
  35. Walker S. A., Downie J. A., 2000. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires NodO and NodE // Mol. Plant Microbe Interactions. Vol. 13. P. 754-762.
  36. Walker S. A., Viprey V., Downie J. A., 2000. Dissection of nodulation using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers // Proc. Natl. Acad. Sci. USA. Vol. 97. P. 13413-14418.
  37. Wieles B., Noort J., Drijfhout J. W. et al., 1995. Purification and functional analysis of the Mycobacterium leprae thioredoxin/ thioredoxin reductase hybrid protein // Journal of biological chemistry. Vol. 270. P. 25604-25606.
  38. Zhukov V., Radutoiu S., Madsen L. H. et al., 2008. The pea Sym37 receptor kinase gene controls infectionthread initiation and nodule development // Mol. Plant Microbe Interactions. Vol. 21. P. 1600-1608.

Statistics

Views

Abstract - 436

PDF (Russian) - 302

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2010 Dolgikh E.A., Leppyanen I.V., Zhukov V.A., Tsyganov V.E., Tikhonovich I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies