Creation of mutant collections for the study of genetic control of stress adaptation in Synechocystis sp

Abstract


The availability of the complete genome sequence of cyanobacterium Synechocystis sp. PCC6803 which has been used as a model organism for molecular-genetic studying oxygenic photosynthesis and cell adaptation to stresses gives the opportunity to investigate the function of each gene in this organism by the targeted inactivation of the predicted genes. This paper presents our main results on functional genomics of Synechocystis based on construction and study of mutant collections with insertion inactivation of the genes encoding peptidases, translocases and the proteins of two-component regulatory systems.

Vladislav V Zinchenko

M.V. Lomonosov Moscow State University , Moscow, RF

Email: vzinchenko@mail.ru

Vadim M Glazer

Saint Petersburg State University, Saint-Petersburg, RF

Email: VMGlaser3@mail.ru

Sergey V Kryazhov

Helikon-Analytica, Moscow, RF

Email: seryik@rambler.ru

Pavel V Luchkin

M.V. Lomonosov Moscow State University , Moscow, RF

Email: zakat@rambler.ru

Mikhail M Babykin

M.V. Lomonosov Moscow State University , Moscow, RF

Email: babykin@mail.ru

Nataliya V Belavina

M.V. Lomonosov Moscow State University , Moscow, RF

Email: nbel@yandex.ru

Dmitry A Los

K. A. Timiryazev Institute of Plant Physiology RAS, Moscow, RF

Email: losda@ippras.ru

  1. Лучкин П. В., 2008. Структурно-функциональный анализ кластера генов tig-clpP2-clpX, контролирующего фотоавтотрофный рост у Synechocystis sp. РСС 6803//Материалы Международной конференции студентов, аспирантов и молодых ученых «Ломоносов -2008», секция «Биология». С. 72-73.
  2. Паничкин В. Б., Глазер В. М., Зинченко В. В. и др., 2001. Ген clpP2, кодирующий пептидазу у цианобактерий Synechocystis sp. PCC 6803, контролирует чувствительность клеток к фотоингибированию//Известия АН. Серия биологическая. Т. 3. С. 312-317.
  3. Пожидаева Е. С., Соколенке А. В., Зинченко В. В., 2007. Роль генов, кодирующих протеолитические ферменты у фотосинтетических организмов//Материалы XV Международной конференции «Новые информационные технологии в медицине, биологии, фармакологии и экологии». С. 52-54.
  4. Aguilar P.S.,Hernandez-Arriaga A.M., Cybulski L. E., et al., 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis//EMBO J. Vol. 20. P. 1681 -1691.
  5. Anderson S., Mcintosh L., 1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process//J. Bacterid. Vol. 173. P. 2761-2767.
  6. Barten P., Till H, 1995. DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC 6803//FEMS Microbiol. Lett. Vol. 129. P. 83-88.
  7. Collier J. L., Grossman A. R., 1994. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria//EMBOJ.Vol. 13. P. 1039-1047.
  8. Dalbey R. E., Wickner W., 1985. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane//J. Biol. Chem. Vol. 260. P. 15925-15931.
  9. Dolganov N., Grossman A.R., 1999. A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobi-lin lyase involved in degradation of phycobilisomes//J. Bacterid. Vol. 181. P. 610-617.
  10. Goudreau P. N., Stock A. M., 1998. Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling//Curr. Opinion in Microbiol. Vol. 1. P. 160-169.
  11. Grigorieva G., Shestakov S., 1982. Transformation in the cyanobacterium Synechocystis sp. 6803//FEMS Microbiol Lett. Vol. 13. P. 367-370.
  12. Kaneko Т., Sato S., Kptani H. et al., 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC6803. //. Sequence determination of the entire genome and assignment of potential protein-coding regions // DNA Res. Vol. 3. P. 109-136.
  13. Карреll A. D., van Waasbergen L. G., 2007. The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803//Arch Microbiol. Vol. 187. P. 337-342
  14. Kehoe D. M., Grossman A. R., 1977. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system//J. Bacteriol. Vol. 179. P. 3914-3921
  15. Kirschner M., 1999. Intracellular proteolysis//Trends Cell Biol. Vol. 9. P. 42-45.
  16. Koksharova O. A., Wolk C. P., 2002. Genetic tools for cyanobacteria//Appl. Microbiol. Biotechnol. Vol. 58. P. 123-137.
  17. Kong R., Xu X., 2002. Three-piece-ligation PCR and application in Disruption of chlorophyll synthesis genes in Synechocystis sp. PCC 6803//Current Microbiol., Vol. 44. P. 241-245.
  18. Kppito R. R., Sitia R., 2000. Aggresomes and Russell bodies//EMBO Rep. Vol. 1. P. 225-231.
  19. Koretke К. К., Lupas A. N., Warren P. V. et al., 2000. Evolution of two-component signal transduction//Mol. Biol. Evol. Vol. 17. P. 1956-1970.
  20. Labarre J., Chauvat E., Thuriaux P., 1989. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis PCC6803//J Bacteriol. Vol.171. P. 3449-3457.
  21. Los D. A., Suzuki I., Zinchenko V. V., Murata N., 2008. Stress responses in Synechocystis: Regulated genes and regulatory systems//The cyanobacteria: molecular biology, genomics and evolution/Eds. Herrero A. and Flores E.: Caister Academic Press, P. 17-157.
  22. Murata N., Los D. A., 2006. Histidine kinase Hik33 is an important participant in cold signal transduction in cyanobacteria//Physiol. Plant. Vol. 126, P. 17-27.
  23. Paithoonrangsarid K., Shoumskaya M. A., Kanesaki Y. et al., 2004. Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis//J. Biol.Chem. Vol. 279. P. 53078-53086.
  24. Parkinson J. S., Kofoid E. C., 1992. Communication modules in bacterial signal proteins//Annu. Rev. Genet. Vol. 26. P. 71-112.
  25. Pojidaeva E., Zinchenko V., Shestakov S. V., Soko-lenko A., 2004. Involvement of the SppAl peptidase in acclimation to saturating light intensities in Synechocystis sp. strain PCC 6803//J. Bacteriol., Vol. 186. P. 3991-3999.
  26. Ponce let M., Cassier-Chauvat C., Leschelle X. et al., 1998. Targeted deletion and mutational analysis of the essential (2Fe-2S) plant-like ferredoxin in Synechocystis PCC6803 by plasmid shuffling//Mol Microbiol. Vol. 28. P. 813-821.
  27. Sambasivarao D., Dawson H. A., Zhang G. et al., 2001. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation//J. Biol. Chem. Vol. 276. P. 20167-20174.
  28. Schopf J. W., 1993. Microfossils of the early archean apex chert -new evidence of the antiquity of life//Science. Vol. 260. P. 640-646.
  29. Schwarz R., Grossman A. R., 1988. A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions//Proc Natl Acad Sci U S A. Vol. 95. P. 11008-11013.
  30. Shoumskaya M. A., Paithoonrangsarid K., Kanesaki Y. et al., 2005. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis//J. Biol. Chem. Vol. 280. P. 21531 -21538.
  31. Sokolenko A., Pojidaeva E., Zinchenko V. et al., 2002. The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts//Current Genetics., Vol.41. P. 291-310.
  32. Stock J., Da Re S., 2000. Signal transduction: response regulators on and off//Curr. Biol. Vol. 10. P. 420-424.
  33. Suzuki L, Los D. A., Kanesaki Y. et al., 2000. The pathway for perception and transduction of low-temperature signals in Synechocystis//EMBO J. Vol. 19. P. 1327-1334.
  34. Taroncher-Oldenburg G., Stephanopoulos G., 2000. Targeted, PCR-based gene disruption in cyanobacteria: inactivation of the polyhydroxyalkanoic acid synthase genes in Synechocystis sp. PCC6803//Appl Microbiol Biotechnol. Vol. 54. P. 677-680.
  35. Thiel Т., 1994. Genetic analysis of cyanobactena//The Molecular Biology Of Cyanobactena/Ed. Bryant D. A. Dordrecht; The Netherlands: Kluwer Academic publ., P.581-611.
  36. Vermaas W., 1996. Molecular genetics of the cyano-bacterium Synechocystis sp. PCC 6803: principles and possible biotechnology applications//J. Appl. Phycol. Vol. 8. P. 263-273.
  37. Williams J. G. K., 1988. Construction of specific mutations in photosystem // photosynthetic reaction center by genetic engineering methods in Synechocystis 6803 // Meth. Enzymol. Vol. 167. R 766-778.
  38. Yamaguchi K., Suzuki I., Yamamoto H. et al., 2002. A Two-component Mn(2+)-sensing system negatively regulates expression of the mntCAB operon in Synechocystis//Plant Cell. Vol. 14. P. 2901-2913.
  39. Zhbanko M., 2006. Functional analysis of the leaderpep-tidases in cyanobacterium Synechocystis sp. PCC 6803: Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium. Halle (Saale), Germany.
  40. Zhbanko M., Zinchenko V., Gutensohn M., Schierhom A., Klosgen R. В., 2005. Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803//J. Bacteriol. Vol. 187. R 3071-3078.

Views

Abstract - 259

PDF (Russian) - 189

PlumX


Copyright (c) 2008 Zinchenko V.V., Glazer V.M., Kryazhov S.V., Luchkin P.V., Babykin M.M., Belavina N.V., Los D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.