Influence of mutations in regulatory PHO genes on stability of a genetic material of yeast Saccharomyces cerevisiae


Yeast Saccharomyces cerevisiae is convenient modelling object for studying of spontaneous mutations frequency under the influence of various environmental factors, and also as a result of metabolism infringement. One of necessary components of the growing media is inorganic phosphate. Its lack influences an expression of many genes. The system of genes expression regulation by phosphate is studied in detail. In the present work dependence of stability of a genetic material of a cage on its metabolic condition caused by mutations in genes, coding phosphate metabolism regulating proteins, is shown.

Arseny M Smirnov

Saint Petersburg State University, Saint-Petersburg, RF


Elena V Sambuk

Saint-Petersburg State University, Saint-Petersburg, RF


  1. Попова Ю.Г., 2002. Исследование роли протеин-киназы Pho85p в регуляции метаболизма дрожжей Saccharomyces cerevisiae и Pichia pastoris: Автореф. канд. дис. СПб, 155 с.
  2. Самбук Е. В., Попова Ю. Г., Физикова А. Ю. и др., 2003. Генетический анализ плейотропных эффектов мутаций рпо85 у дрожжей Saccharomyces cerevisiae//Генетика. Т. 39, № 8. С. 1039-1045.
  3. Самбук Е. В., Физикова А. Ю., Захарова К. В. и др., 2005. Отсутствие циклинзависимой фосфопро-теинкинвазы Pho85p приводит к нарушению распределения митохондриальных нуклеоидов у дрожжей Saccharomyces cerevisiae//Цитология. Т. 47, № 10. С. 917-924.
  4. Achilli A., Matmati N., Casalone E. et al., 2004. The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine//BMC Genetics. Vol. 5. P. 34.
  5. Babudri N., Pavlov Y.I., Matmati N. et al., 2001. Stationary-phase mutations in proofreading exo-nuclease-deficient strains of the yeast Saccharomyces cerevisiae//Mol. Genet. Genomics. Vol.265. P. 362-366.
  6. Barbaric S.,Münsterkötter M., Coding С. et al., 1998. Cooperative Pho2-Pho4 interactions at the РП05 promoter are critical for binding of Pho4 to UASpl and for efficient transactivation by Pho4 at UASp2//Mol. Cell. Biol. Vol. 18, № 5. P. 2629-2639.
  7. Begley T. J., Rosenbach A. S., Ideker T. et al., 2002. Damage recover pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping//Molecular Cancer Research. Vol. 1. P. 103-112.
  8. Brown С. J., Todd K.M., Rosenzweig R.F., 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment//Mol. Biol. Evol. Vol. 15. P. 931-942.
  9. Chen C., Umezu K., Kplodner R.D., 1998. Chromosomal rearragements occur in S. cerevisiae rial mutator mutants due to mutagenic lesions processed by double-strand-break repair//Mol. Cell. Vol. 2. P. 9-22.
  10. Eisler H., Frohlich К. U., Heidenreich E., 2004. Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast//Exp Cell Res. Vol. 300. P. 345-353.
  11. Fedorova I. V., Kovaltzova S. V., Gracheva E. M. et al., 2004. Requirement of HSM3 gene for spontaneous mutagenesis in Saccharomyces cerevisiae//Mutat Res. Vol. 554. P. 67-75.
  12. Galhardo R.S., Hastings P. J., Rosenberg S.M., 2007. Mutation as a stress response and the regulation of evolvability//Critical Reviews in Biochemistry and Molecular Biology. Vol. 42. P. 399-435.
  13. Gasch A. P., Spellman P. Т., Као С. М. et al., 2000. Genomic expression programs in the response of yeast cells to environmental changes//Mol. Biol. Cell. Vol. 11. P. 4241-4257.
  14. Hackett J. A., Feldser D.M., Greider С. W., 2001. Telomere dysfunction increases mutation rate and genomic instability//Cell. Vol. 106. P. 275-286.
  15. Hall B. G., 1998. Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations//Genetica.Vol. 102-103. P. 109-125.
  16. Hall B. G., 1992. Selection-induced mutations occur in yeast//PNAS. Vol. 89. P. 4300-4303.
  17. Hansche R.E., 1975. Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae//Genetics. Vol. 79. P. 661-674.
  18. Hanway D., Chin J. K, Xia G et al., 2002. Previosly uncharacterized genes in UV-and MMS-induced DNA damage response in yeast//PNAS. Vol. 99. P. 10605-10610.
  19. Hryciw T., Tang M., Fontanie T. et al., 2002. MMSI protects against replication-dependent FNA damage in Saccharomyces cerevisiae//Mol. Genet. Genomics. Vol. 266. P. 848-857.
  20. Huang D., Farkas I., Roach P. J., 1996. Pho85p, a cyclin-dependent protein kinase, and Snf 1 p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae//Mol. Cell. Biol. Vol. 16. P. 4357-4365.
  21. Huang D., Friesen H., Andrews В., 2007. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast//Molecular Microbiology. Vol. 66. P. 303-314.
  22. Huang D., Patrick G., Moffat J. et al., 1999. Mammalian Cdk5 is a functional homologue of the budding yeast Pho85 cyclin-dependent protein kinase//PNAS. Vol. 96, N 25. P. 14445-14450.
  23. Hunter Т., Plowman G. D., 1997. The protein kinases of budding yeast: six score and more//Trends Bio-chem. Sci. Vol. 22. P. 18-22.
  24. Ilyina V. L., Korogodin V. I., Fajszi C, 1986. Dependence of spontaneous reversion frequencies in haploid yeast of different yeast of different genotypes on the concentration of adenine in the medium and on the age of the culture//Mutation Res. Vol. 174.P. 189-194.
  25. Kaffman A., Rank N.M., O'Shea E.K., 1998. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse/Kapl21//Genes Dev. Vol. 12. P. 2673-2683.
  26. Kesti T., McDonald W. H, Yates J. R. et al., 2004. Cell cycle-dependent phosphorilation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase//J. Biol. Chem. Vol. 279. P. 14245-14255.
  27. Kokoska R. J., Stefanovic L., DeMai J. et al., 2000. Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta//Mol. Cell. Biol. Vol. 20. P. 7490-7504.
  28. Liu J., Kipreos E. Т., 2000. Evolution of cyclindepen-dent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoan//Mol Biol Evol. Vol. 17. P. 1061-1074.
  29. Liu C., Yang Z., Yang J., Xia Z., Ao S., 2000. Regulation of the yeast transcriptional factor PH02 activity by phosphorylation//J. Biol. Chem. Vol. 275. P. 31972-31978.
  30. Measday V., Moore L., Retnakaran R. et al., 1997. A Family of cyclin-like proteins that interact with the Pho85 Cyclin-Depedent Kinase//Mol. and Cel. Biol. P. 1212-1223.
  31. Nurse P.M., 2002. Cyclin Dependent kinases and cell cycle control//Bioscience Reports. Vol. 22. Nos. 5, 6.
  32. gawa N., DeRisi J., Brown P. O., 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in revealed by genomic expression analysis//Mol. Biol. Cell. Vol. 11, N 12. P. 4309-4321.
  33. shima Y., 1997. The phosphatase system in Saccharomyces cerevisiae//Genes. Genet. Syst. Vol. 72. P. 323-334.
  34. Putnam C. D., Pennaneach V., Kolodner R. D., 2005. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype//Molecular and Cellular Biology. Vol. 25. N 16. P. 7226-7238.
  35. Rocche W.A., Foster P. L., 2000. Determining mutation rates in bacterial populations//Methods. Vol. 20. P. 4-17.
  36. Sambuk E. V., Popova J. G., Demberelijn O., Smirnov M. N., 1995. Genetic analysis of supressors of pho85 mutations in Saccharomyces cerevisiae//17th Int. Conf. on yeast genetics and molecular biology, Book of abstracts, Lisboa, Portugal p. 89.
  37. Schneider K.R., Smith R.L., O'Shea E.K., 1994. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by CDK inhibitor PH081//Science. Vol. 266. P. 122-126.
  38. Siede W., Friedberg E. C., 1990. Influence of DNA repair deficiencies on the UV sensitivity of yeast cells in different cell cycle stages//Mutat. Res. Vol. 245. P. 287-292.
  39. Timblin B.K, Bergman L.W., 1997. Elevated expression of stress response genes resulting from deletion of the PH085 gene//Mol. Microbiol. Vol. 26. P. 981-990.
  40. Toh-e A., Nishizawa M., 2001. Structure and function of cyclin-dependent Pho85p kinase of Saccharomyces cerevisiae//J. Gen. Appl. Microbiol. Vol. 47. P. 107-117.
  41. Toh-e A., TanakaK, Uesono Y. et al., 1988. PH085, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae//Mol. Gen. Genet. Vol. 214. P. 162-164.
  42. Wu X., Wang Z., 1998. Relationships between yeast Rad27 and Apnl in response to apurinic/apyrimidin-ic (AP) sites in DNA//Nucleic Acids Res. Vol. 27. P. 956-962.


Abstract - 264

PDF (Russian) - 249



Copyright (c) 2008 Smirnov A.M., Sambuk E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.