Differential effect of estrogen and progesterone on in vitro growth of uterine leiomyoma cells with chromosome 7 deletions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The studies on how sex steroid hormones affect growth of uterine leiomyoma cells with chromosomal abnormalities is highly relevant for development of personalized tumor therapy.

AIM: To study in vitro the isolated and combined effects of estrogen and progesterone on uterine leiomyoma cells with chromosomal aberrations — deletions in 7q.

MATERIALS AND METHODS: The study was performed on 15 uterine leiomyomas, excised from 15 women of 26–44 years of age who were not treated with hormones. Uterine leiomyoma cells were cultured in hormone-free medium, in the medium supplemented with estrogen, progesterone or both hormones. The chromosome preparations were made and stained with QFH/AcD to perform conventional karyotyping and fluorescence in situ hybridization (FISH) to accurately describe chromosomal rearrangements. The frequency of uterine leiomyoma cells with chromosomal aberrations was assessed by interphase FISH.

RESULTS: Deletions in 7q were identified in 6 out of 15 karyotyped uterine leiomyomas; four of them had one clone with deletion in 7q whereas two others comprised two clones with 7q deletions of different length. The frequency of cells carrying deletions in 7q greatly varied in uterine leiomyoma samples cultured in hormone-free medium: from 3.5% to 93.6%. Exposure of cell cultures to estrogen and progesterone resulted in a fold change frequency increase in some of the uterine leiomyomas and decrease in the others. The most significant changes in the frequency of cells with deletions in 7q were registered in response to the isolated estrogen and, to a lesser extent, to progesterone exposure; less significant changes were observed after combined hormonal effect.

CONCLUSIONS: In uterine leiomyomas with deletions in 7q, the frequency of abnormal cells may either increase or decrease in response to estrogen and progesterone in vitro supplementation. The isolated effect of estrogen or progesterone on the frequency of uterine leiomyoma cells with deletion in 7q is more pronounced compared to the combined one.

Full Text

Restricted Access

About the authors

Alla S. Koltsova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Author for correspondence.
Email: rosenrot15@yandex.ru
ORCID iD: 0000-0002-6587-9429
SPIN-code: 3038-4096
Scopus Author ID: 57189621865
ResearcherId: O-1814-2017
Russian Federation, Saint Petersburg

Olga A. Efimova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014
Scopus Author ID: 14013324600
ResearcherId: F-5764-2014

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Vladislav S. Baranov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: baranov@vb2475.spb.edu
ORCID iD: 0000-0002-6518-1207
SPIN-code: 9196-7297
Scopus Author ID: 56057974100

MD, Dr. Sci. (Medicine), Professor, Сorresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

Maria I. Yarmolinskaya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
Scopus Author ID: 7801562649

MD, Dr. Sci. (Medicine), Professor of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

Nikolai I. Polenov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: polenovdoc@mail.ru
ORCID iD: 0000-0001-8575-7026
SPIN-code: 9387-1703
Scopus Author ID: 57221965664

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Anna A. Pendina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Saint Petersburg State University

Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133
Scopus Author ID: 6506976983

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Stewart E, Cookson C, Gandolfo R, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG Int J Obstet Gynaecol. 2017;124(10):1501–1512. doi: 10.1111/1471-0528.14640
  2. Giuliani E, As-Sanie S, Marsh EE. Epidemiology and management of uterine fibroids. Int J Gynaecol Obstet. 2020;149(1):3–9. doi: 10.1002/ijgo.13102
  3. Yang Q, Ciebiera M, Bariani MV, et al. Comprehensive review of uterine fibroids: Developmental origin, pathogenesis, and treatment. Endocr Rev. 2022;43(4):678–719. doi: 10.1210/endrev/bnab039
  4. Morris JM, Liang A, Fleckenstein K, et al. A systematic review of minimally invasive approaches to uterine fibroid treatment for improving quality of life and fibroid-associated symptoms. Reprod Sci. 2023;30(5):1495–1505. doi: 10.1007/s43032-022-01120-9
  5. Koltsova AS, Efimova OA, Pendina AA. A view on uterine leiomyoma genesis through the prism of genetic, epigenetic and cellular heterogeneity. Int J Mol Sci. 2023;24(6):5752. doi: 10.3390/ijms24065752
  6. Yang Q, Diamond MP, Al-Hendy A. Early life adverse environmental exposures increase the risk of uterine fibroid development: Role of epigenetic regulation. Front Pharmacol. 2016;7:40. doi: 10.3389/fphar.2016.00040
  7. Prusinski Fernung LE, Yang Q, Sakamuro D, et al. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod. 2018;99(4):735–748. doi: 10.1093/biolre/ioy097
  8. Włodarczyk M, Nowicka G, Ciebiera M, et al. Epigenetic regulation in uterine fibroids-the role of ten-eleven translocation enzymes and their potential therapeutic application. Int J Mol Sci. 2022;23(5):2720. doi: 10.3390/ijms23052720
  9. Alset D, Pokudina IO, Butenko EV, Shkurat TP. The effect of estrogen-related genetic variants on the development of uterine leiomyoma: Meta-analysis. Reprod Sci. 2022;29(6):1921–1929. doi: 10.1007/s43032-022-00911-4
  10. Dzhemlikhanova LK, Efimova OA, Osinovskaya NS, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with increased risk of multiple uterine leiomyomas either positive or negative for MED12 exon 2 mutations. J Clin Pathol. 2017;70(3):233–236. doi: 10.1136/jclinpath-2016-203976
  11. Efimova OA, Koltsova AS, Krapivin MI, et al. Environmental epigenetics and genome flexibility: Focus on 5-Hydroxymethylcytosine. Int J Mol Sci. 2020;21(9):3223. doi: 10.3390/ijms21093223
  12. Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol. 2016;59(1):2–24. doi: 10.1097/GRF.0000000000000164
  13. Moravek MB, Bulun SE. Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol. 2015;27(4):276–283. doi: 10.1097/GCO.0000000000000185
  14. Luo N, Guan Q, Zheng L, et al. Estrogen-mediated activation of fibroblasts and its effects on the fibroid cell proliferation. Transl Res J Lab Clin Med. 2014;163(3):232–241. doi: 10.1016/j.trsl.2013.11.008
  15. Ali M, Ciebiera M, Vafaei S, et al. Progesterone signaling and uterine fibroid pathogenesis; molecular mechanisms and potential therapeutics. Cells. 2023;12(8):1117. doi: 10.3390/cells12081117
  16. Wu X, Serna VA, Thomas J, et al. Subtype-specific tumor-associated fibroblasts contribute to the pathogenesis of uterine leiomyoma. Cancer Res. 2017;77(24):6891–6901. doi: 10.1158/0008-5472.CAN-17-1744
  17. Patel S, Homaei A, Raju AB, Meher BR. Estrogen: The necessary evil for human health, and ways to tame it. Biomed Pharmacother. 2018;102:403–411. doi: 10.1016/j.biopha.2018.03.078
  18. Grimm SL, Hartig SM, Edwards DP. Progesterone receptor signaling mechanisms. J Mol Biol. 2016;428(19):3831–3849. doi: 10.1016/j.jmb.2016.06.020
  19. Yu L, Liu J, Yan Y, et al. “Metalloestrogenic” effects of cadmium downstream of G protein-coupled estrogen receptor and mitogen-activated protein kinase pathways in human uterine fibroid cells. Arch Toxicol. 2021;95(6):1995–2006. doi: 10.1007/s00204-021-03033-z
  20. Bariani MV, Rangaswamy R, Siblini H, et al. The role of endocrine-disrupting chemicals in uterine fibroid pathogenesis. Curr Opin Endocrinol Diabetes Obes. 2020;27(6):380–387. doi: 10.1097/MED.0000000000000578
  21. Donnez J, Dolmans MM. Uterine fibroid management: from the present to the future. Hum Reprod Update. 2016;22(6):665–686. doi: 10.1093/humupd/dmw023
  22. Lewis TD, Malik M, Britten J, et al. A comprehensive review of the pharmacologic management of uterine leiomyoma. BioMed Res Int. 2018;2018:2414609. doi: 10.1155/2018/2414609
  23. El Sabeh M, Borahay MA. The future of uterine fibroid management: a more preventive and personalized paradigm. Reprod Sci. 2021;28(11):3285–3288. doi: 10.1007/s43032-021-00618-y
  24. He C, Nelson W, Li H, et al. Frequency of MED12 mutation in relation to tumor and patient’s clinical characteristics: a meta-analysis. Reprod Sci. 2022;29(2):357–365. doi: 10.1007/s43032-021-00473-x
  25. Li Y, Qiang W, Griffin BB, et al. HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma. Fertil Steril. 2020;114(5): 1085–1096. doi: 10.1016/j.fertnstert.2020.05.036
  26. Hodge JC, Pearce KE, Clayton AC, et al. Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am J Obstet Gynecol. 2014;210(6):572.e1–572.e7. doi: 10.1016/j.ajog.2014.01.011
  27. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158(1):1–26. doi: 10.1016/j.cancergencyto.2004.08.025
  28. Hodge JC, Park PJ, Dreyfuss JM, et al. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer. 2009;48(10):865–885. doi: 10.1002/gcc.20692
  29. Ozisik YY, Meloni AM, Surti U, Sandberg AA. Deletion 7q22 in uterine leiomyoma. A cytogenetic review. Cancer Genet Cytogenet. 1993;71(1):1–6. doi: 10.1016/0165-4608(93)90195-r
  30. Hu J, Surti U. Subgroups of uterine leiomyomas based on cytogenetic analysis. Hum Pathol. 1991;22(10):1009–1016. doi: 10.1016/0046-8177(91)90009-e
  31. Ishwad CS, Ferrell RE, Hanley K, et al. Two discrete regions of deletion at 7q in uterine leiomyomas. Genes Chromosomes Cancer. 1997;19(3):156–160. doi: 10.1002/(sici)1098-2264(199707)19:3<156::aid-gcc4>3.0.co;2-x
  32. Mashal RD, Fejzo ML, Friedman AJ, et al. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer. 1994;11(1):1–6. doi: 10.1002/gcc.2870110102
  33. Xing YP, Powell WL, Morton CC. The del(7q) subgroup in uterine leiomyomata: genetic and biologic characteristics. Further evidence for the secondary nature of cytogenetic abnormalities in the pathobiology of uterine leiomyomata. Cancer Genet Cytogenet. 1997;98(1):69–74. doi: 10.1016/s0165-4608(96)00406-2
  34. Koltsova AS, Efimova OA, Malysheva OV, et al. Cytogenomic profile of uterine leiomyoma: In vivo vs in vitro comparison. Biomedicines. 2021;9(12):1777. doi: 10.3390/biomedicines9121777
  35. Pendina AA, Efimova OA, Tikhonov AV, et al. Immunofluorescence staining for cytosine modifications like 5-Methylcytosine and its oxidative derivatives and FISH. In: Liehr T, editor. Fluorescence in situ hybridization (FISH). Berlin: Heidelberg: Springer, 2017 P. 337–346. doi: 10.1007/978-3-662-52959-1_35
  36. Koltsova AS, Efimova OA, Pendina AA, et al. Uterine leiomyomas with an apparently normal karyotype comprise minor heteroploid subpopulations differently represented in vivo and in vitro. Cytogenet Genome Res. 2021;161(1–2):43–51. doi: 10.1159/000513173
  37. Takahashi K, Kawamura N, Ishiko O, Ogita S. Shrinkage effect of gonadotropin releasing hormone agonist treatment on uterine leiomyomas and t(12;14). Int J Oncol. 2002;20(2):279–283. doi: 10.3892/ijo.20.2.279
  38. Takahashi K, Kawamura N, Tsujimura A, et al. Association of the shrinkage of uterine leiomyoma treated with GnRH agonist and deletion of long arm of chromosome 7. Int J Oncol. 2001;18(6): 1259–1263. doi: 10.3892/ijo.18.6.1259
  39. Mäkinen N, Kämpjärvi K, Frizzell N, et al. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol Cancer. 2017;16(1):101. doi: 10.1186/s12943-017-0672-1
  40. Liu C, Dillon J, Beavis AL, et al. Prevalence of somatic and germline mutations of Fumarate hydratase in uterine leiomyomas from young patients. Histopathology. 2020;76(3):354–365. doi: 10.1111/his.14007
  41. Mäkinen N, Vahteristo P, Kämpjärvi K, et al. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet EJHG. 2013;21(11):1300–1303. doi: 10.1038/ejhg.2013.33
  42. Hennig Y, Deichert U, Bonk U, et al. Chromosomal translocations affecting 12q14-15 but not deletions of the long arm of chromosome 7 associated with a growth advantage of uterine smooth muscle cells. Mol Hum Reprod. 1999;5(12):1150–1154. doi: 10.1093/molehr/5.12.1150
  43. Ozisik YY, Meloni AM, Powell M, et al. Chromosome 7 biclonality in uterine leiomyoma. Cancer Genet Cytogenet. 1993;67(1):59–64. doi: 10.1016/0165-4608(93)90045-n
  44. Vanharanta S, Wortham NC, Langford C, et al. Definition of a minimal region of deletion of chromosome 7 in uterine leiomyomas by tiling-path microarray CGH and mutation analysis of known genes in this region. Genes Chromosomes Cancer. 2007;46(5):451–458. doi: 10.1002/gcc.20427
  45. Sell SM, Tullis C, Stracner D, et al. Minimal interval defined on 7q in uterine leiomyoma. Cancer Genet Cytogenet. 2005;157(1):67–69. doi: 10.1016/j.cancergencyto.2004.06.007
  46. Zeng WR, Scherer SW, Koutsilieris M, et al. Loss of heterozygosity and reduced expression of the CUTL1 gene in uterine leiomyomas. Oncogene. 1997;14(19):2355–2365. doi: 10.1038/sj.onc.1201076
  47. Sourla A, Polychronakos C, Zeng WR, et al. Plasminogen activator inhibitor 1 messenger RNA expression and molecular evidence for del(7)(q22) in uterine leiomyomas. Cancer Res. 1996;56(13): 3123–3128.
  48. Liu B, Chen G, He Q, et al. An HMGA2-p62-ERα axis regulates uterine leiomyomas proliferation. FASEB J. 2020;34(8):10966–10983. doi: 10.1096/fj.202000520R
  49. Ono M, Qiang W, Serna VA, et al. Role of stem cells in human uterine leiomyoma growth. PloS One. 2012;7(5):e36935. doi: 10.1371/journal.pone.0036935
  50. Goad J, Rudolph J, Zandigohar M, et al. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum Reprod Oxf Engl. 2022;37(10):2334–2349. doi: 10.1093/humrep/deac183

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Metaphase plate (a) and interphase nuclei (b) from cultured uterine leiomyoma cells after fluorescence in situ hybridization (FISH) with DNA probes specific for three loci of chromosome 7: centromere 7p11.1-q11.1 (blue), 7q22 (red), 7q31.2 (green) (XL del(7)(q22q31) probe, Metasystems, Germany). Locus 7q22 is deleted in one of the homologues of chromosome 7 in the metaphase plate (а) and in two interphase nuclei (b), shown by arrows

Download (116KB)
3. Fig. 2. Fluctuations in a frequency of cells with deletions in 7q from uterine leiomyomas cultured with estrogen (E), progesterone (P) and both estrogen and progesterone (E+P) compared to controls cultured in hormone-free medium (C). Figure presents results of comparisons for four ULs (а–d), each comprising one abnormal cell clone with deletion in 7q. Statistical analysis was performed using χ2 test with Yates correction (explanations are in the text)

Download (186KB)
4. Fig. 3. Fluctuations in a frequency of cells with deletions in 7q from uterine leiomyomas cultured with estrogen (E), progesterone (P) and both estrogen and progesterone (E+P) compared to controls cultured in hormone-free medium (C). Figure presents results of comparisons for two ULs, each comprising two abnormal cell clones with deletions in 7q (а, b). Statistical analysis was performed using χ2 test with Yates correction (explanations are in the text)

Download (146KB)
5. Fig. 4. Significance level of differences between frequency of cell with deletions in 7q in paired samples of 6 uterine leiomyomas (ULs) cultured in hormone-free medium or with estrogen and/or progesterone supplementation. Differences were confirmed by χ2 test with Yates correction. p ≥ 0.05 shows no significant differences; 0.05 > p ≥ 0.01 shows differences at low level of significance; 0.01 > p ≥ 0.0001 shows difference at medium level of significance; p < 0.0001 shows differences at high level of significance

Download (126KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies