Genetic polymorphism in waxweed (Red Book of the Russian Federation) in North-West Russia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Waxweed (Myrica gale L.) is a protected plant species found in the Russian Federation only in the Leningrad Region and Karelia. It is almost not studied from the genetic point of view. This species is presumably hexaploid; it propagates mainly vegetatively, and the role of sexual reproduction in the life cycle of waxweed is unclear. All waxweed populations in the Russian Federation are small and belong to the edge ones (occupy the easternmost positions in the range).

AIM: The aim of the study is to investigate genomic DNA polymorphism in waxweed populations in the Russian Federation, and to evaluate the role of sexual reproduction in propagation and dispersal of this species.

MATERIALS AND METHODS: AFLP-analysis of waxweed genomic DNA in 6 natural populations (5 populations in the Leningrad Region, 1 in Karelia). Using 3 pairs of primers, we studied waxweed genomic polymorphism for 22 DNA fragments.

RESULTS: Each of the studied waxweed populations is genetically polymorphic. Among 182 analyzed plants we distinguished 27 different AFLP-genotypes, two of which were common in all populations studied. Most of others AFLP genotypes (20) were represented just by a single plant or a couple of plants. Some of these rare AFLP genotypes are likely the results of mutation and/or recombination processes affecting the common AFLP genotypes.

CONCLUSIONS: The role of sexual reproduction in waxweed propagation, although minor, is noticeable.

Full Text

Restricted Access

About the authors

Oleg N. Tikhodeyev

Saint Petersburg State University

Author for correspondence.
Email: tikhodeyev@mail.ru
ORCID iD: 0000-0001-9923-8614
SPIN-code: 4663-2218

Cand. Sci. (Biology), Associate Professor

Russian Federation, Saint Petersburg

Marina Y. Tikhodeeva

Saint Petersburg State University

Email: marinaur@list.ru
ORCID iD: 0000-0002-9347-6758
SPIN-code: 2573-2107

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Anna E. Romanovich

Saint Petersburg State University

Email: aromanovich@gmail.com
ORCID iD: 0009-0004-7839-8482
SPIN-code: 8364-4430

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Uliyana A. Galaktionova

Saint Petersburg State University; Vega Ltd, Alkor Bio Group

Email: ugalaktionova@alkorbio.ru
Russian Federation, Saint Petersburg; Saint Petersburg

Olga A. Semicheva

Saint Petersburg State University; Vega Ltd, Alkor Bio Group

Email: osemicheva@alkorbio.ru
Russian Federation, Saint Petersburg; Saint Petersburg

Vyacheslav N. Bolshakov

Vega Ltd, Alkor Bio Group

Email: vbolshakov@alkorbio.ru
ORCID iD: 0009-0007-5126-6035
Russian Federation, Saint Petersburg

References

  1. Grayson KL, Johnson DM. Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion. J Anim Ecol. 2018;87(3):581–593. doi: 10.1111/1365-2656.12755
  2. Bondareva O, Genelt-Yanovskiy E, Abramson N. Copse snail Arianta arbustorum (Linnaeus, 1758) (Gastropoda: Helicidae) in the Baltic Sea Region: Invasion or range extension? Insights from phylogeographic analysis and climate niche modeling. J Zool Syst Evol Res. 2020;58(1):221–229. doi: 10.1111/jzs.12350
  3. Rehm EM, Olivas P, Stroud J, Feeley KJ. Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol. 2015;5(19):4315–4326. doi: 10.1002/ece3.1645
  4. Vavilov NI. Centres of origin of cultivated plants. Works on applied botany and breeding. Vol. 16. Leningrad: VIR, 1926. (In Russ.)
  5. Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol. 2008;17(5):1170–1188. doi: 10.1111/j.1365-294x.2007.03659.x
  6. Brown JH, Stevens GC, Kaufman DM. The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst. 1996;27:597–623. doi: 10.1146/annurev.ecolsys.27.1.597
  7. Pulliam RH. On the relationship between niche and distribution. Ecol Lett. 2000;3:349–361. doi: 10.1046/j.1461-0248.2000.00143.x
  8. Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97–159. doi: 10.1093/genetics/16.2.97
  9. Kaidanov LZ. Genetics of populations. Moscow: Higher School, 1996. 319 p. (In Russ.)
  10. Masel J. Genetic drift. Curr Biol. 2011;21(20):R837–R838. doi: 10.1016/j.cub.2011.08.007
  11. Klimes L, Klimesova J, Hendriks R, van Groenendael J. Clonal plant architecture: a comparative analysis of form and function. In: De Kroon H., van Groenendael J, editors. The ecology and evolution of clonal plants. Leiden: Backhys Publishers, 1997. P. 1–29.
  12. Ivanter EV, Kuznetsov OL, editors. Red book of the Republic of Karelia. Petrozavodsk: Karelia, 2007. 364 p. (In Russ.)
  13. Marsh waxwort. In: Komarov VL, editor. Flora of the USSR. Vol. 5. Moscow; Leningrad: AS USSR Publ., 1936. P. 243–244. (In Russ.)
  14. Volkova EA, Smagin VA, Khramtsov VN. Communities with Myrica gale L. in mires of the Gulf of Finland coast (St. Petersburg and Leningrad Region). Vegetation of Russia. 2021;(41):58–74. EDN: HGHKAD doi: 10.31111/vegrus/2021.41.58
  15. Bardunov LV, Novikov VS, editors. Red data book of the Russian Federation (plants and fungi). Moscow: Ministry of Natural Resources and Ecology of the Russian Federation and Rosprirodnadzor, 2008. 885 p. (In Russ.)
  16. Poore MED. The ecology of woodwalton fen. J Ecol. 1956;44(2):455–492. doi: 10.2307/2256832
  17. Skene KR, Sprent JI, Raven JA, Herdman L. Myrica gale L. J Ecol. 2000;88(6):1079–1094. doi: 10.1046/j.1365-2745.2000.00522.x
  18. Schwintzer CR, Ostrofsky A. Factors affecting germination of Myrica gale seeds. Can J Forest Res. 1989;19(9):1105–1109. doi: 10.1139/x89-167
  19. Bond G. The fixation of nitrogen associated with the root nodules of Myrica gale L., with special reference to its pH relation and ecological significance. Ann Bot. 1951;15(4):447–459. doi: 10.1093/oxfordjournals.aob.a083291
  20. Schwintzer CR, Lancelle SA. Effect of water table depth on shoot growth, root growth and nodulation of Myrica gale seedlings. J Ecol. 1983;71(2):489–501. doi: 10.2307/2259730
  21. Crocker LJ, Schwintzer CR. Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. Plant Soil. 1993;152:287–298. doi: 10.1007/BF00029099
  22. MacDonald AD. The morphology and relationships of the Myricaceae. In: Crane PR, Blackmore S, editors. Evolution, systematics and fossil history of the Hamamelidae. Vol. 2: Higher Hamamelidae. Oxford: Clarendon Press, 1989. P. 147–165.
  23. de Vere N, Rich TC, Ford CR, et al. DNA barcoding the native flowering plants and conifers of Wales. PloS One. 2012;7:e37945. doi: 10.1371/journal.pone.0037945
  24. Kuzmina ML, Braukman TWA, Fazecas AJ, et al. Using herbarium-derived DNAs to assemble a largescale DNA barcode library for the vascular plants of Canada. Appl Plant Sci. 2017;5(12):1700079. doi: 10.3732/apps.1700079
  25. Galaktionova UA, Bolshakov VN, Tikhodeeva MYu, Tikhodeyev ON. Specific problems of genomic DNA extraction from plants: ways for solution. Botanicheskii zhurnal. 2023;108(6):603–614. EDN: ZLLHZC doi: 10.31857/S0006813623060030
  26. Semicheva OA, Galaktionova UA, Bolshakov VN, et al. Polymorphism of genomic DNA of Myrica gale L. on the territory of the state nature reserve “Lebyazhiy” (southern coast of the Gulf of Finland). Botanicheskii zhurnal. 2024;109(1) In Press.
  27. Svoboda KP, Inglis A, Hampson J, et al. Biomass production, essential oil yield and composition of Myrica gale L. harvested from wild populations in Scotland and Finland. Flavour Frag J. 1998;13(6):367–372. doi: 10.1002/(SICI)1099-1026(199811/12)13:6%3C367::AID-FFJ724 %3E3.0.CO;2-M
  28. Sylvestre M, Legault J, Dufour D, Pichette A. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. Phytomedicine. 2005;12(2):299–304. doi: 10.1016/j.phymed.2003.12.004
  29. Popovici J, Bertrand C, Bagnarol E, et al. Chemical composition of essential oil and headspace-solid microextracts from fruits of Myrica gale L. and antifungal activity. Nat Product Res. 2008;22(12): 1024–1032. doi: 10.1080/14786410802055568
  30. Rosa GP, Silva BJ, Seca AML, et al. Phytochemicals with added value from Morella and Myrica species. Molecules. 2020;25(24):6052. doi: 10.3390 %2Fmolecules25246052
  31. Aggarwal G, Edhigalla P, Walia P. A comprehensive review of high-quality plant DNA isolation. J Pharm Innov. 2022; SP-11(6):171–176.
  32. Kotchoni SO, Gachomo EW. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. Mol Biol Rep. 2009;36:1633–1636. doi: 10.1007/s11033-008-9362-9
  33. Blignaut M, Ellis AG, Le Roux JJ. Towards a transferable and cost-effective plant AFLP protocol. PloS One. 2013;8:e61704. doi: 10.1371%2Fjournal.pone.0061704
  34. Glotov NV, Zhivotovsky LA, Khovanov NV, Khromov-Borisov NN. Biometrics. Leningrad: LSU, 1982. (In Russ.)
  35. Leipold M, Tausch S, Hirtreiter M, et al. Sampling for conservation genetics: how many loci and individuals are needed to determine the genetic diversity of plant populations using AFLP? Conserv Genet Resour. 2020;12:99–108. doi: 10.1007/s12686-018-1069-1
  36. Huguet V, Batzli JM, Zimpfer JF, et al. Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol. 2001;67(5):2116–2122. doi: 10.1128 %2FAEM.67.5.2116-2122.2001
  37. Huguet V, Mergeay M, Cervantes E, Fernandez M. Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Environ Microbiol. 2004;6(10):1032–1041. doi: 10.1111/j.1462-2920.2004.00625.x
  38. Popovici J, Comte G, Bagnarol E, et al. Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol. 2010;76(8):2451–2460. doi: 10.1128/aem.02667-09
  39. Popovici J, Walker V, Bertrand C, et al. Strain specificity in the Myricaceae–Frankia symbiosis is correlated to plant root phenolics. Funct Plant Biol. 2011;38(9):682–689. doi: 10.1071/fp11144
  40. Saunders JA, Pedroni MJ, Penrose LD, Fist AJ. AFLP analysis of opium poppy. Crop Sci. 2001;41(5):1596–1601. doi: 10.2135/cropsci2001.4151596x
  41. Nguyen TT, Taylor PWJ, Redden RJ, Ford R. Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed. 2004;123(2): 173–179. doi: 10.1046/j.1439-0523.2003.00942.x
  42. Gil-Vega K, Díaz C, Nava-Cedillo A, Simpson J. AFLP analysis of Agave tequilana varieties. Plant Sci. 2006;170(4):904–909. doi: 10.1016/j.plantsci.2005.12.014
  43. Patsias K, Bruelheide H. Is the degree of clonality of forest herbs dependent on gap age? Using fingerprinting approaches to assess optimum successional stages for montane forest herbs. Ecol Evol. 2011;1(3):290–305. doi: 10.1002/ece3.23
  44. Roldan-Ruiz I, Dendauw J, Van Bockstaele E, et al. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed. 2000;6:125–134. doi: 10.1023/A%3A1009680614564
  45. Inge-Vechtomov SG. Genetics with the basics of breeding. 2nd ed. Saint Petersburg: N-L, 2010. (In Russ.)
  46. Batygina TB, editor. Embryology of flowering plants. Terminology and concepts. In 3 vol. Vol. 3. Reproduction systems. Moscow: World and family, 2000. 640 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. An example of DNA fragments chosen for AFLP analysis with the use of F-EcoRI-AAT and Tru9I-CTT primers. The number above a peak means the length of a chosen fragment (bp). Fragments corresponding to other peaks in this chromatogram were not chosen for the analysis due to either unclear identification or low reproducibility in independent technical replicates. Fragment length markers are shown in orange

Download (986KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies