Effect of mutations in the Sym7, Sym19 and Sym34 genes on the interaction of pea (Pisum sativum L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Within the pea (Pisum sativum L.) species, genotypes with high and low responsiveness to inoculation with arbuscular mycorrhizal fungi can be distinguished.

AIM: The aim of this study was to test the hypothesis that pea responsiveness to arbuscular mycorrhizal fungi inoculation may be inversely correlated with root colonization levels.

MATERIALS AND METHODS: The wild-type line Finale with low responsiveness to arbuscular mycorrhizal fungi inoculation and symbiotic mutants obtained on its basis were used. Plants were grown under controlled climatic conditions with a deficiency of available phosphorus; the fungus Rhizophagus irregularis was used for inoculation. Parameters of plant growth and development of reproductive organs were determined 52 and 71 days after inoculation, which corresponded to the flowering and pod filling stages, respectively.

RESULTS: All mutant lines under conditions without inoculation had generally reduced parameters compared to the original line Finale. Inoculation led to a decrease in many parameters in the line Finale. Mutations in the Sym7 and Sym34 genes, which led to a decrease or delay in the start of mycorrhization, respectively, contributed to the manifestation of a positive plant response to inoculation. The mutant in the Sym19 gene almost completely lacked intrartadical colonization, while inoculation had no effect on the growth and development of above-ground organs.

CONCLUSIONS: The study results support the idea that reducing mycorrhization levels can have a positive effect on pea plants.

Full Text

Restricted Access

About the authors

Oksana Y. Shtark

All-Russia Research Institute for Agricultural Microbiology

Email: oshtark@yandex.ru
ORCID iD: 0000-0002-3656-4559
SPIN-code: 4934-4465
Scopus Author ID: 21935113900
ResearcherId: J-4063-2018

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Aleksandr I. Zhernakov

All-Russia Research Institute for Agricultural Microbiology

Email: azhernakov@gmail.com
ORCID iD: 0000-0001-8961-9317
Russian Federation, Saint Petersburg

Natalia E. Kichigina

All-Russia Research Institute for Agricultural Microbiology

Email: n.kichigina@arriam.ru
ORCID iD: 0000-0002-6568-7988
Russian Federation, Saint Petersburg

Gulnara A. Akhtemova

All-Russia Research Institute for Agricultural Microbiology

Email: ahgulya@yandex.ru
ORCID iD: 0000-0001-7957-3693
SPIN-code: 1714-8554

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Anton S. Sulima

All-Russia Research Institute for Agricultural Microbiology

Email: asulima@arriam.ru
ORCID iD: 0000-0002-2300-857X
SPIN-code: 4906-1159

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Evgeny A. Zorin

All-Russia Research Institute for Agricultural Microbiology

Email: kjokkjok8@gmail.com
ORCID iD: 0000-0001-5666-3020
SPIN-code: 5048-0203

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Vladimir A. Zhukov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: vzhukov@arriam.ru
ORCID iD: 0000-0002-2411-9191
SPIN-code: 2610-3670
Scopus Author ID: 35325957900

Candidate of Biological Sciences, Head of the Laboratory of Genetics of Plant-Microbe Interactions

Russian Federation, Saint Petersburg

References

  1. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd edition. San Diego, London: Academic Press; 2008. doi: 10.1016/B978-0-12-370526-6.X5001-6
  2. Keymer A., Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Curr Opin Plant Biol. 2018;44: 137–144. doi: 10.1016/j.pbi.2018.04.005
  3. Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, et al. An updated review on the modulation of carbon partitioning and allocation in arbuscular mycorrhizal plants. Microorganisms. 2022;10(1):75. doi: 10.3390/microorganisms10010075
  4. Nadal M, Paszkowski U. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2013;16(4):473–479. doi: 10.1016/j.pbi.2013.06.005
  5. Luginbuehl LH, Oldroyd GED. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol. 2017;27(17): R952–R963. doi: 10.1016/j.cub.2017.06.042
  6. Fester T, Sawers R. Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. CRC Crit Rev Plant Sci. 2011;30(5):459–470. doi: 10.1080/07352689.2011.605741
  7. Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P. Chapter 3. Arbuscular mycorrhiza in crop improvement under environmental stress. In: Emerging technologies and management of crop stress tolerance. Vol. 2. Academic Press; 2014. P. 69–95. doi: 10.1016/B978-0-12-800875-1.00003-X
  8. Latef AAHA, Hashem A, Rasool S, et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J Plant Biology. 2016;59(5):407–426. doi: 10.1007/s12374-016-0237-7
  9. Rivero J, Álvarez D, Flors V, et al. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytologist. 2018;220(4):1322–1336. doi: 10.1111/nph.15295
  10. Jakobsen I, Smith SE, Smith FA. Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR, editors. Mycorrhizal ecology. Ecological studies. Vol. 157. Berlin: Springer, Heidelberg; 2003. P. 75–92. doi: 10.1007/978-3-540-38364-2_3
  11. Van Der Heijden MGA. Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR, editors. Mycorrhizal ecology. Ecological studies. Vol. 157. Berlin: Springer, Heidelberg; 2003. P. 243–265. doi: 10.1007/978-3-540-38364-2_10
  12. Klironomos JN. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology. 2003;84(9):2292–2301. doi: 10.1890/02-0413
  13. Konvalinková T, Jansa J. Lights off for arbuscular mycorrhiza: On its symbiotic functioning under light deprivation. Front Plant Science. 2016;7:782. doi: 10.3389/fpls.2016.00782
  14. Kosterin OE. Pea (Pisum sativum L.): the uneasy fate of the first genetical object. Vavilov journal of genetics and breeding. 2015;19(1):13–26. EDN: TWQXOZ
  15. Sinyushin AA, Gostimsky SA. Achievements and prospects of using pea (Pisum sativum) as a model object in plant development genetics. Biology Bulletin Reviews. 2008;128(6):531–541. EDN: JUPCZN (In Russ.)
  16. Yakobi LM, Kukalev AS, Ushakov KV, et al. Polymorphism of seed pea forms on the efficiency of symbiosis with the endomycorrhizal fungus Glomus sp. under conditions of rhizobium inoculation. Agricultural biology. 2000;(3):94–102. EDN: YLBAPD (In Russ.)
  17. Zhukov VA, Zhernakov AI, Sulima AS, et al. Association study of symbiotic genes in pea (Pisum sativum L.) cultivars grown in symbiotic conditions. Agronomy. 2021;11(11):2368. doi: 0.3390/agronomy11112368
  18. Rivera-Becerril F, Calantzis C, Turnau K, et al. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot. 2002;53(371):1177–1185. doi: 10.1093/jexbot/53.371.1177
  19. Xavier LJC, Germida JJ. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils. 2003;37(5):161–167. doi: 10.1007/s00374-003-0605-6
  20. Borisov AYu, Naumkina TS, Shtark OYu, et al. Effectiveness of combined inoculation of pea (Pisum sativum L.) with arbuscularmycorrhizal fungu and rhizobia. Bulletin of the Russian Academy of Agricultural Sciences. 2004;(2):12–13. EDN: PKBJBD
  21. Schweiger R, Baier MC, Persicke M, Müller C. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun. 2014;5:3886. doi: 10.1038/ncomms4886
  22. Desalegn G, Turetschek R, Kaul H-P, Wienkoop S. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteomics. 2016;143:173–187. doi: 10.1016/j.jprot.2016.03.018
  23. Zhukov VA, Akhtemova GA, Zhernakov AI, et al. Evaluation of the symbiotic effectiveness of pea (Pisum sativum L.) genotypes in pot experiment. Agricultural Biology. 2017;52(3):607–614. EDN: YZKVLX doi: 10.15389/agrobiology.2017.3.607eng
  24. Shtark OY, Puzanskiy RK, Avdeeva GS, et al. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ. 2019;7: e7495. doi: 10.7717/peerj.7495
  25. Yurkov AP, Lactionov YuV, Kojemyakov AP, Stepanova GV. Symbiotic efficiency of bacterial and fungal preparations for forage crops according to seed harvest. Kormoproizvodstvo. 2017;(3):16–21. EDN: YGUNSX
  26. Müller LM, Harrison MJ. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2019;50:132–139. doi: 10.1016/j.pbi.2019.05.004
  27. Engvild KC. Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor Appl Genet. 1987;74(6):711–713. doi: 10.1007/BF00247546
  28. Borisov AY, Danilova TN, Koroleva TA, Naumkina TS. Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia (Bratisl). 2004;59(S13):137–144.
  29. Kistner C, Winzer T, Pitzschke A, et al. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell. 2005;17(8):2217–2229. doi: 10.1105/tpc.105.032714
  30. Shtark OY, Zhukov VA, Provorov NA, et al. Intimate associations of beneficial soil microbes with host plants. In: Dixon G, Tilston E, editors. Soil microbiology and sustainable crop production. Springer; 2010. P. 119–196. EDN: SLALLN doi: 10.1007/978-90-481-9479-7_5
  31. Kaló P, Gleason C, Edwards A, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science. 2005;308(5729):1786–1789. doi: 10.1126/science.1110951
  32. Dolgikh EA, Leppyanen IV, Osipova MA, et al. Genetic dissection of Rhizobium-induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis. Plant Biol. 2011;13(2):285–296. doi: 10.1111/j.1438-8677.2010.00372.x
  33. Shtark OY, Sulima AS, Zhernakov AI, et al. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis. 2016;68(1–3):129–144. doi: 10.1007/s13199-016-0382-2
  34. Liu W, Kohlen W, Lillo A, et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell. 2011;23(10):3853–3865. doi: 10.1105/tpc.111.089771
  35. Maillet F, Poinsot V, André O, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011;469(7328):58–63. doi: 10.1038/nature09622
  36. Delaux P-M, Bécard G, Combier J-P. NSP 1 is a component of the Myc signaling pathway. New Phytologist. 2013;199(1):59–65. doi: 10.1111/nph.12340
  37. Endre G, Kereszt A, Kevei Z, et al. A receptor kinase gene regulating symbiotic nodule development. Nature. 2002;417(6892): 962–966. doi: 10.1038/nature00842
  38. Stracke S, Kistner C, Yoshida S, et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature. 2002;417(6892):959–962. doi: 10.1038/nature00841
  39. Marsh JF, Schultze M. Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytologist. 2001;150(3):525–532. doi: 10.1046/j.1469-8137.2001.00140.x
  40. Demchenko K, Winzer T, Stougaard J, et al. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytologist. 2004;163(2):381–392. doi: 10.1111/j.1469-8137.2004.01123.x
  41. Muromtsev GS, Marshunova GA, Jacobi LM. Certificate of author No. 1501509 to invention: A strain of endomycorrhizal fungus Glomus mosseae Nic. & Gerd., increasing the yield of agricultural plants and improving their mineral nutrition. (In Russ.)
  42. Knott CM. A key for stages of development of the pea (Pisum sativum). Ann Appl Biol. 1987;111(1):233–245. doi: 10.1111/j.1744-7348.1987.tb01450.x
  43. Fox J. Applied regression analysis and generalized linear models. Sage Publications; 2015. 816 p.
  44. Vierheilig H, Coughlan AP, Wyss U, Piché Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol Am Soc Microbiol. 1998;64(12):5004–5007. doi: 10.1128/AEM.64.12.5004-5007.1998
  45. Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S, editors. Physiological and genetical aspects of mycorrhizae. Paris: INRA, 1986. P. 217–221.
  46. Little TM, Hills FJ. Agricultural experimentation. Design and analysis. New York: John Wiley and Sons United States; 1978. 350 p.
  47. Kuznetsova E, Seddas-Dozolme PMA, Arnould C, et al. Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices. Mycorrhiza. 2010;20(6):427–443. doi: 10.1007/s00572-009-0292-8
  48. Nagae M, Takeda N, Kawaguchi M. Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus. Plant Signal Behav. 2014;9(5):e28544. doi: 10.4161/psb.28544
  49. Shtark OY, Zhukov VA, Tikhonovich IA, et al. Strigolactones as regulators of symbiotrophy of plants and microorganisms. Russian Journal of Plant Physiology. 2018;65(2):83–100. EDN: YSSSHV doi: 10.7868/S001533031802001X
  50. Smith SE, Jakobsen I, Grønlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol Am Soc Plant Biol. 2011;156(3):1050–1057. doi: 10.1104/pp.111.174581

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of arbuscular mycorrhiza (AM) development in pea plants: Finale (wt) line and RisNod2 (sym19) mutant, inoculated with the fungus Rhizophagus irregularis BEG144. Parameters of AM development: EM% is intensity of external (extraradical) mycelium development; M% is intensity of intraradical mycelium development; a% is abundance of arbuscules in the mycorrhizal part of the root. The values of all three parameters differ significantly (р ≤ 0.05) in the initial line and the mutant at each of the time points. The values of the EM% and M% parameters differ significantly at all three time points in both pea genotypes. Error bars represent the errors of the mean. For the EM% and M% parameters in the mutant, the error bars do not go beyond the data point markers; the values of the a% parameter at 7 DPI in the mutant are equal to “0” in all replicates

Download (88KB)
3. Fig. 2. Parameters of root colonization by the arbuscular mycorrhiza fungus Rhizophagus irregularis BEG144 in the Finale pea line and induced mutants with various changes in the development of intraradical and extraradical mycelium at the second analysis stage (stage “filled pod, green seeds”, 71 days after inoculation). M% is the intensity of mycorrhizal colonization; a% is the saturation of mycorrhizal fragments of the root system with arbuscules. *Values for mutants that differ significantly from those for the original line at p ≤ 0.05. Error bars represent the errors of the mean

Download (85KB)
4. Fig. 3. Effect of inoculation with the arbuscular mycorrhiza fungus Rhizophagus irregularis BEG144 on the development parameters of the Finale line pea plants and induced mutants with various changes in the development of intraradical and extraradical mycelium at the first stage of analysis (flowering stage, 52 days after inoculation). *Parameter values for the inoculated variant significantly different from the values for the non-inoculated variant of the same pea line at р ≤ 0.05. Error bars represent the errors of the mean. RN is RisNod

Download (257KB)
5. Fig. 4. Effect of inoculation with the arbuscular mycorrhiza fungus Rhizophagus irregularis BEG144 on the growth and development parameters of the Finale line pea plants and induced mutants with various changes in the development of the intraradical and extraradical mycelium at the second stage of analysis (stage “filled pod, green seeds”, 71 days after inoculation). *Parameter values for the inoculated variant that are significantly different from the values for the non-inoculated variant of the same pea line at p ≤ 0.05. Error bars represent the errors of the mean. RN is RisNod

Download (330KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.