Genome editing of pea (Pisum sativum L.) using CRISPR/Cas9 technology: Review
- Authors: Zhuravlev I.Y.1, Subkhanov L.R.1, Sulima A.S.2, Zhernakov A.I.2, Tikhonovich I.A.1,2, Zhukov V.A.2
-
Affiliations:
- Sirius University of Science and Technology
- All-Russia Research Institute for Agricultural Microbiology
- Issue: Vol 23, No 1 (2025)
- Pages: 81-98
- Section: Methodology in ecological genetics
- Submitted: 02.11.2024
- Accepted: 10.01.2025
- Published: 19.04.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/640891
- DOI: https://doi.org/10.17816/ecogen640891
- ID: 640891
Cite item
Abstract
The review article discusses advances in genome editing of pea (Pisum sativum L.) using CRISPR/Cas9 technology. Despite more than a decade of CRISPR/Cas9 application in plant biotechnology, the first successful genome editing in pea was achieved only in 2023, when researchers induced mutations in the model gene PsPDS, whose disruption leads to plant albinism. To date, CRISPR/Cas9 has also been used to introduce mutations in the PsLOX2 gene, encoding lipoxygenase, resulting in a reduced concentration of volatile compounds responsible for the undesirable odor of seeds, and in the PsBAS1 gene, leading to blocked saponin biosynthesis and improved seeds’ palatability. Researchers emphasize the need to further optimize transformation protocols to enhance their efficiency and address the low regenerative capacity of pea. The review also briefly outlines the history of CRISPR-Cas9 discovery and its development as a key genome editing tool. In addition, it examines CRISPR/Cas9 modifications that improve editing precision and their potential applications in pea genome engineering. A key aspect of the article is the discussion of CRISPR/Cas9 as a tool for modulating the specificity and efficiency of pea symbiosis with nitrogen-fixing bacteria, which may contribute to the development of resilient and productive agroecosystems.
Full Text

About the authors
Igor Yu. Zhuravlev
Sirius University of Science and Technology
Author for correspondence.
Email: zhuravlev.iy@talantiuspeh.ru
ORCID iD: 0009-0005-5967-5664
SPIN-code: 8991-4230
Russian Federation, Sochi
Linar R. Subkhanov
Sirius University of Science and Technology
Email: lsubxanov@bk.ru
ORCID iD: 0009-0004-8513-8179
SPIN-code: 6925-3496
Russian Federation, Sochi
Anton S. Sulima
All-Russia Research Institute for Agricultural Microbiology
Email: asulima@arriam.ru
ORCID iD: 0000-0002-2300-857X
SPIN-code: 4906-1159
Cand. Sci. (Biology)
Russian Federation, Pushkin, Saint PetersburgAleksandr I. Zhernakov
All-Russia Research Institute for Agricultural Microbiology
Email: azhernakov@gmail.com
ORCID iD: 0000-0001-8961-9317
Russian Federation, Pushkin, Saint Petersburg
Igor A. Tikhonovich
Sirius University of Science and Technology; All-Russia Research Institute for Agricultural Microbiology
Email: i.tikhonovich@arriam.ru
ORCID iD: 0000-0001-8968-854X
SPIN-code: 6685-9419
Dr. Sci. (Biological), Academician of the Russian Academy of Sciences, Professor
Russian Federation, Sochi; Pushkin, Saint PetersburgVladimir A. Zhukov
All-Russia Research Institute for Agricultural Microbiology
Email: vzhukov@arriam.ru
ORCID iD: 0000-0002-2411-9191
SPIN-code: 2610-3670
Cand. Sci. (Biology)
Russian Federation, Pushkin, Saint PetersburgReferences
- Smýkal P, Aubert G, Burstin J, et al. Pea (Pisum sativum L.) in the genomic era. Agronomy. 2012;2(2):74–115. doi: 10.3390/agronomy2020074
- Zohary D, Hopf M. Domestication of pulses in the old world: Legumes were companions of wheat and barley when agriculture began in the Near East. Science. 1973;182(4115):887–894. doi: 10.1126/science.182.4115.887
- Smýkal P, Coyne CJ, Ambrose MJ, et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci. 2015;34(1–3):43–104. doi: 10.1080/07352689.2014.897904
- Tzitzikas EN, Vincken J-P, de Groot J, et al. Genetic variation in pea seed globulin composition. J Agric Food Chem. 2006;54(2): 425–433. doi: 10.1021/jf0519008
- Bennetau-Pelissero C. Plant proteins from legumes. In: Mérillon JM, Ramawat KG, editors. Bioactive molecules in food. Reference series in phytochemistry. Springer International Publishing; 2019. P. 223–265. doi: 10.1007/978-3-319-78030-6_3
- Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutrit. 2012;108(S1):S3–S10. doi: 10.1017/S0007114512000852
- Ge J, Sun C-X, Corke H, et al. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Comp Rev Food Sci Food Safe. 2020;19(4):1835–1876. doi: 10.1111/1541-4337.12573
- Smýkal P. Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed. 2014;50(2):52–64. doi: 10.17221/2/2014-CJGPB
- Praça-Fontes MM, Carvalho CR, Clarindo WR. Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Syst Evol. 2014;300(7):1621–1626. doi: 10.1007/s00606-014-0987-y
- Tayeh N, Aubert G, Pilet-Nayel ML, et al. Genomic tools in pea breeding programs: Status and perspectives. Front Plant Sci. 2015;6:1037. doi: 10.3389/fpls.2015.01037
- Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1
- Yang T, Liu R, Luo Y, et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet. 2022;54(10):1553–1563. doi: 10.1038/s41588-022-01172-2
- Li G, Liu R, Xu R, et al. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J. 2023;11(1):132–139. doi: 10.1016/j.cj.2022.04.011
- Shtark OY, Borisov AY, Zhukov VA, Tikhonovich IA. Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis. 2012;58(1):51–62. doi: 10.1007/s13199-013-0226-2
- Provorov NA, Tikhonovich IA. Agricultural microbiology and symbiogenetics: synthesis of classical ideas and construction of high-Ly productive agrocenoses (review). Agricultural Biology. 2022;57(5): 821–831. doi: 10.15389/agrobiology.2022.5.821rus EDN: IJQJAC
- Zipfel C, Oldroyd GED. Plant signalling in symbiosis and immunity. Nature. 2017;543(7645):328–336. doi: 10.1038/nature22009
- Oldroyd GED, Dixon R. Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol. 2014;26:19–24. doi: 10.1016/j.copbio.2013.08.006
- Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987
- Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x
- Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–182. doi: 10.1007/s00239-004-0046-3
- Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–2561. doi: 10.1099/mic.0.28048-0
- Lander ES. The heroes of CRISPR. Cell. 2016;164(1–2): 18–28. doi: 10.1016/j.cell.2015.12.041
- Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712. doi: 10.1126/science.1138140
- Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891): 960–964. doi: 10.1126/science.1159689
- Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1(1):7. doi: 10.1186/1745-6150-1-7
- Garneau JE, Dupuis M-È, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71. doi: 10.1038/nature09523
- Horvath P, Romero DA, Coûté-Monvoisin A-C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophiles. J Bacteriol. 2008;190(4):1401–1412. doi: 10.1128/JB.01415-07
- Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322(5909):1843–1845. doi: 10.1126/science.1165771
- Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–607. doi: 10.1038/nature09886
- Jinek M, Chylinski K, Fonfara I, et al. A programmable Dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829
- Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS USA. 2012;109(39):E2579–E2586. doi: 10.1073/pnas.1208507109
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. doi: 10.1126/science.1232033
- Li J-F, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–691. doi: 10.1038/nbt.2654
- Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8): 686–688. doi: 10.1038/nbt.2650
- Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691–693. doi: 10.1038/nbt.2655
- Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. doi: 10.1126/science.1247997
- Ran FA, Hsu PD, Lin C-Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–1389. doi: 10.1016/j.cell.2013.08.021
- Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46(1):505–529. doi: 10.1146/annurev-biophys-062215-010822
- Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096
- Jiang F, Zhou K, Ma L, et al. A Cas9-guide RNA complex preorganized for target DNA recognition. Science. 2015;348(6242): 1477–1481. doi: 10.1126/science.aab1452
- Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA End-joining pathway. Annu Rev Biochem. 2010;79(1):181–211. doi: 10.1146/annurev.biochem.052308.093131
- San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77(1):229–257. doi: 10.1146/annurev.biochem.77.061306.125255
- Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424. doi: 10.1038/nature17946
- Gaudelli NM, Komor AC, Rees HA, et al. Publisher correction: programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2018;559(7714):E8. doi: 10.1038/s41586-018-0070-x
- Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol. 2020;38(7):875–882. doi: 10.1038/s41587-019-0393-7
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. doi: 10.1038/s41586-019-1711-4
- Kantsurova ES, Kozlov NV, Dolgikh EA. Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological Genetics. 2024;22(1):63–74. doi: 10.17816/ecogen623140 EDN: LYTNRL
- Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9(1):39. doi: 10.1186/1746-4811-9-39
- Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol. 2020;21(11): 661–677. doi: 10.1038/s41580-020-00288-9
- Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv. 2019;37(7):107405. doi: 10.1016/j.biotechadv.2019.06.004
- Rogers SG, Klee HJ, Horsch RB, Fraley RT. Improved vectors for plant transformation: Expression cassette vectors and new selectable markers. Methods in Enzymol. 1987;153:253–277. doi: 10.1016/0076-6879(87)53058-0
- Altpeter F, Springer NM, Bartley LE, et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28(7): 1510–1520. doi: 10.1105/tpc.16.00196
- Ellison EE, Nagalakshmi U, Gamo ME, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants. 2020;6(6):620–624. doi: 10.1038/s41477-020-0670-y
- Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60(5):490–505. doi: 10.1007/s11427-017-9022-1
- Ludvíková M, Griga M. Pea transformation: History, current status and challenges. Czech J Genet Plant Breed. 2022;58(3):127–161. doi: 10.17221/24/2022-CJGPB
- Rubluo A, Kartha KK, Mroginski LA, Dyck J. Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. J Plant Physiol. 1984;117(2):119–130. doi: 10.1016/S0176-1617(84)80024-3
- Lutova LA, Zabelina EK. Callus and shoot formation in different forms of Pisum sativum L. in vitro. Genetica. 1988;24:1632–1640.
- Ezhova TA, Bagrova AM, Gostimskij SA. Shoot transformation in callus tissues derived from stem apices, epicotyls, stem internodes, and leaves of various pea genotypes. Fiziologija Rastenij. 1985;32:513–520.
- Aftabi M, Teressa Negawo A, Hassan F. Improved protocol for agrobacterium-mediated transformation of Pea (Pisum sativum). Mol Biol. 2017;7(1):1000202. doi: 10.4172/2168-9547.1000202
- Grant J, Cooper P. Peas (Pisum sativum L.). In: Wang K, editor. Agrobacterium protocols. Methods in molecular biology. Vol. 343. Humana Press; 2006. P. 337–346. doi: 10.1385/1-59745-130-4:337
- Nadolska-Orczyk A, Orczyk W. Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed. 2000;6(2):185–194. doi: 10.1023/A:1009679908948
- Chowrira GM, Akella V, Fuerst PE, Lurquin PF. Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol. 1996;5(2):85–96. doi: 10.1007/BF02789058
- Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41–52. doi: 10.1016/j.biotechadv.2014.12.006
- Cardi T, Murovec J, Bakhsh A, et al. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trend Plant Sci. 2023;28(10):1144–1165. doi: 10.1016/j.tplants.2023.05.012
- Rosellini D. Selectable markers and reporter genes: A well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci. 2012;31(5):401–453. doi: 10.1080/07352689.2012.683373
- Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95–104. doi: 10.1016/j.biotechadv.2016.12.003
- Kumagai MH, Donson J, della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. PNAS USA. 1995;92(5):1679–1683. doi: 10.1073/pnas.92.5.1679
- Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777–786. doi: 10.1046/j.1365-313X.2002.01394.x
- Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10(8):e0136064. doi: 10.1371/journal.pone.0136064
- Kaur N, Alok A, Shivani, et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genom. 2018;18(1):89–99. doi: 10.1007/s10142-017-0577-5
- Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. PNAS USA. 2015;112(11):3570–3575. doi: 10.1073/pnas.1420294112
- Bhowmik P, Yan W, Hodgins C, et al. CRISPR/Cas9-mediated lipoxygenase gene-editing in yellow pea leads to major changes in fatty acid and flavor profiles. Front Plant Sci. 2023;14:1246905. doi: 10.3389/fpls.2023.1246905
- Jelen H. Food flavors: Chemical, sensory and technological properties. CRC Press; 2011. 504 p.
- Pandey PK, Bhowmik P, Kagale S. Optimized methods for random and targeted mutagenesis in field pea (Pisum sativum L.). Front Plant Sci. 2022;13:995542. doi: 10.3389/fpls.2022.995542
- Hodgins CL, Salama EM, Kumar R, et al. Creating saponin-free yellow pea seeds by CRISPR/Cas9-enabled mutagenesis on β-amyrin synthase. Plant Direct. 2024;8(1):e563. doi: 10.1002/pld3.563
- Heng L, Vincken J-P, van Koningsveld G, et al. Bitterness of saponins and their content in dry peas. J Sci Food Agric. 2006;86(8): 1225–1231. doi: 10.1002/jsfa.2473
- LeBlanc C, Zhang F, Mendez J, et al. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 2018;93(2):377–386. doi: 10.1111/tpj.13782
- Sun X, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep. 2015;5(1):10342. doi: 10.1038/srep10342
- Sulima AS, Zhukov VA. War and Peas: molecular bases of resistance to powdery mildew in Pea (Pisum sativum L.) and other legumes. Plants. 2022;11(3):339. doi: 10.3390/plants11030339
- Tikhonovich IA, Provorov NA. From plant-microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Ann Appl Biol. 2009;154(3):341–350. doi: 10.1111/j.1744-7348.2008.00306.x
- Cooper JE. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue: Early legume-rhizobia interactions. J Appl Microbiol. 2007;103(5):1355–1365. doi: 10.1111/j.1365-2672.2007.03366.x
- Shumilina J, Soboleva A, Abakumov E, et al. Signaling in legume-rhizobia symbiosis. Int J Mol Sci. 2023;24(24):17397. doi: 10.3390/ijms242417397
- Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev. 2000;64(1):180–201. doi: 10.1128/mmbr.64.1.180-201.2000
- Geurts R, Bisseling T. Rhizobium nod factor perception and signaling. Plant Cell. 2002;14(S1):S239–S249. doi: 10.1105/tpc.002451
- Peck MC, Fisher RF, Long SR. Diverse flavonoids stimulate nodd1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol. 2006;188(15):5417–5427. doi: 10.1128/JB.00376-06
- Larrainzar E, Riely BK, Kim SC, et al. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol. 2015;169(1):233–265. doi: 10.1104/pp.15.00350
- Bensmihen S, de Billy F, Gough C. Contribution of NFP LysM domains to the recognition of nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLOS ONE. 2011;6(11): e26114. doi: 10.1371/journal.pone.0026114
- Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet. 1998;32(1):33–57. doi: 10.1146/annurev.genet.32.1.33
- Mergaert P, Van Montagu M, Holsters M. Molecular mechanisms of Nod factor diversity. Mol Microbiol. 1997;25(5):811–817. doi: 10.1111/j.1365-2958.1997.mmi526.x
- Dénarié J, Debellé F, Promé J-C. rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503–535. doi: 10.1146/annurev.bi.65.070196.002443
- Sulima AS, Zhukov VA, Kulaeva OA, et al. New sources of Sym2A allele in the pea (Pisum sativum L.) carry the unique variant of candidate LysM-RLK gene LykX. PeerJ. 2019;7:e8070. doi: 10.7717/peerj.8070
- Stacey GS, Burris RH, Evans HJ. Biological nitrogen fixation. Springer science and business media; 1992.
- Geurts R, Xiao TT, Reinhold-Hurek B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trend Plant Sci. 2016;21(3): 199–208. doi: 10.1016/j.tplants.2016.01.012
- Razumovskaya ZG. Formation of nodules in different pea varieties. Microbiology. 1937;6(3):321–328. (In Russ.)
- Govorov LI. The peas of Afghanistan. Bull Appl Bot. 1928; 497–522.
- Lie TA, Timmermans PCJM. Host-genetic control of nitrogen fixation in the legume-Rhizobium symbiosis: complication in the genetic analysis due to maternal effects. Plant Soil. 1983;75(3): 449–453. doi: 10.1007/BF02369979
- Lie TA. Symbiotic specialisation in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan. Ann Appl Biol. 1978;88(3):462–465. doi: 10.1111/j.1744-7348.1978.tb00743.x
- Davis EO, Evans IJ, Johnston AWB. Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet. 1988;212(3):531–535. doi: 10.1007/BF00330860
- Provorov NA, Onishchuk OP. Evolutionary-genetic bases for symbiotic engineering in plants — a mini review. Agricultural Biology. 2018;53(3):464–474. doi: 10.15389/agrobiology.2018.3.464rus EDN: EACWHD
- Provorov NA, Tikhonovich IA. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Res Crop Evol. 2003;50(1):89–99. doi: 10.1023/A:1022957429160
- Onishchuk OP, Vorobyov NI, Provorov NA. Nodulation competitiveness of nodule bacteria: Genetic control and adaptive significance: Review. Appl Biochem Microbiol. 2017;53(2):131–139. doi: 10.1134/S0003683817020132
- Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia — the roots of a success story. Curr Opin Plant Biol. 2018;44:7–15. doi: 10.1016/j.pbi.2017.12.001
- Zhukov V, Radutoiu S, Madsen LH, et al. The Pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. MPMI. 2008;21(12):1600–1608. doi: 10.1094/MPMI-21-12-1600
- Young JPW, Matthews P. A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium. Heredity. 1982;48(2):203–210. doi: 10.1038/hdy.1982.26
- Lie TA. Host genes in Pisum sativum L. conferring resistance to European Rhizobium leguminosarum strains. Plant Soil. 1984;82(3):415–425. doi: 10.1007/BF02184279
- Geurts R, Heidstra R, Hadri E, et al. Sym2 of Pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 1997;115(2):351–359. doi: 10.1104/pp.115.2.351
- Kozik A. Fine mapping of the Sym2 locus of Pea Linkage group 1. Wageningen University and Research; 1996. 111 p.
- Kozik A, Heidstra R, Horvath B, et al. Pea lines carrying sym1 or sym2 can be nodulated by Rhizobium strains containing nodX; sym1 and sym2 are allelic. Plant Sci. 1995;108(1):41–49. doi: 10.1016/0168-9452(95)04123-C
- Sulima AS, Zhukov VA, Afonin AA, et al. Selection signatures in the first exon of paralogous receptor kinase genes from the Sym2 region of the Pisum sativum L. genome. Front Plant Sci. 2017;8:1957. doi: 10.3389/fpls.2017.01957
- Patent RUS No. 2815453/ 21.10.2023. Zhukov VA, Zhuravlev IY, Tikhonovich IA. Molecular genetic marker of CAPS type in pea plants Pisum sativum L. and method of identification of plants homozygous for the allele causing the formation of increased specificity towards symbiotic nodule bacteria. Available from: https://fips.ru/EGD/8d1092c2-fa04-4df7-add6-b975d7f5333a (In Russ.)
- Shtark OY, Danilova TN, Naumkina TS, et al. Analysis of Pea (Pisum sativum L.) source material for breeding of cultivars with high symbiotic potential and choice of criteria for its evaluation. Ecological genetics. 2006;4(2):22–28. doi: 10.17816/ecogen4222-28 EDN: HZNUSV
- Zhukov VA, Zhernakov AI, Kulaeva OA, et al. De Novo Assembly of the Pea (Pisum sativum L.) nodule transcriptome. Int J Genom. 2015;2015:695947. doi: 10.1155/2015/695947
- Dorosinsky LM. Tuberous bacteria and nitragin. Moscow: Kolos; 1970. (In Russ.)
- Provorov NA, Simarov BV. Genetic polymorphism of legume crops on the ability to symbiosis with nodule bacteria. Genetika. 1992;28(6):5–14. EDN: YPIMBT (In Russ.)
- Lugtenberg BJJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol. 2001;39(1):461–490. doi: 10.1146/annurev.phyto.39.1.461
- McGuire AV, Northfield TD. Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front Sustain Food Syst. 2020;4:6. doi: 10.3389/fsufs.2020.00006
- Chetkova SA, Tikhonovich IA. Isolation and investigation of Rhizobium leguminosarum strains effective on peas of Afghan origin. Microbiology. 1986;(13):124–129.
Supplementary files
