Genome editing of pea (Pisum sativum L.) using CRISPR/Cas9 technology: Review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review article discusses advances in genome editing of pea (Pisum sativum L.) using CRISPR/Cas9 technology. Despite more than a decade of CRISPR/Cas9 application in plant biotechnology, the first successful genome editing in pea was achieved only in 2023, when researchers induced mutations in the model gene PsPDS, whose disruption leads to plant albinism. To date, CRISPR/Cas9 has also been used to introduce mutations in the PsLOX2 gene, encoding lipoxygenase, resulting in a reduced concentration of volatile compounds responsible for the undesirable odor of seeds, and in the PsBAS1 gene, leading to blocked saponin biosynthesis and improved seeds’ palatability. Researchers emphasize the need to further optimize transformation protocols to enhance their efficiency and address the low regenerative capacity of pea. The review also briefly outlines the history of CRISPR-Cas9 discovery and its development as a key genome editing tool. In addition, it examines CRISPR/Cas9 modifications that improve editing precision and their potential applications in pea genome engineering. A key aspect of the article is the discussion of CRISPR/Cas9 as a tool for modulating the specificity and efficiency of pea symbiosis with nitrogen-fixing bacteria, which may contribute to the development of resilient and productive agroecosystems.

Full Text

Restricted Access

About the authors

Igor Yu. Zhuravlev

Sirius University of Science and Technology

Author for correspondence.
Email: zhuravlev.iy@talantiuspeh.ru
ORCID iD: 0009-0005-5967-5664
SPIN-code: 8991-4230
Russian Federation, Sochi

Linar R. Subkhanov

Sirius University of Science and Technology

Email: lsubxanov@bk.ru
ORCID iD: 0009-0004-8513-8179
SPIN-code: 6925-3496
Russian Federation, Sochi

Anton S. Sulima

All-Russia Research Institute for Agricultural Microbiology

Email: asulima@arriam.ru
ORCID iD: 0000-0002-2300-857X
SPIN-code: 4906-1159

Cand. Sci. (Biology)

Russian Federation, Pushkin, Saint Petersburg

Aleksandr I. Zhernakov

All-Russia Research Institute for Agricultural Microbiology

Email: azhernakov@gmail.com
ORCID iD: 0000-0001-8961-9317
Russian Federation, Pushkin, Saint Petersburg

Igor A. Tikhonovich

Sirius University of Science and Technology; All-Russia Research Institute for Agricultural Microbiology

Email: i.tikhonovich@arriam.ru
ORCID iD: 0000-0001-8968-854X
SPIN-code: 6685-9419

Dr. Sci. (Biological), Academician of the Russian Academy of Sciences, Professor

Russian Federation, Sochi; Pushkin, Saint Petersburg

Vladimir A. Zhukov

All-Russia Research Institute for Agricultural Microbiology

Email: vzhukov@arriam.ru
ORCID iD: 0000-0002-2411-9191
SPIN-code: 2610-3670

Cand. Sci. (Biology)

Russian Federation, Pushkin, Saint Petersburg

References

  1. Smýkal P, Aubert G, Burstin J, et al. Pea (Pisum sativum L.) in the genomic era. Agronomy. 2012;2(2):74–115. doi: 10.3390/agronomy2020074
  2. Zohary D, Hopf M. Domestication of pulses in the old world: Legumes were companions of wheat and barley when agriculture began in the Near East. Science. 1973;182(4115):887–894. doi: 10.1126/science.182.4115.887
  3. Smýkal P, Coyne CJ, Ambrose MJ, et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci. 2015;34(1–3):43–104. doi: 10.1080/07352689.2014.897904
  4. Tzitzikas EN, Vincken J-P, de Groot J, et al. Genetic variation in pea seed globulin composition. J Agric Food Chem. 2006;54(2): 425–433. doi: 10.1021/jf0519008
  5. Bennetau-Pelissero C. Plant proteins from legumes. In: Mérillon JM, Ramawat KG, editors. Bioactive molecules in food. Reference series in phytochemistry. Springer International Publishing; 2019. P. 223–265. doi: 10.1007/978-3-319-78030-6_3
  6. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutrit. 2012;108(S1):S3–S10. doi: 10.1017/S0007114512000852
  7. Ge J, Sun C-X, Corke H, et al. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Comp Rev Food Sci Food Safe. 2020;19(4):1835–1876. doi: 10.1111/1541-4337.12573
  8. Smýkal P. Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed. 2014;50(2):52–64. doi: 10.17221/2/2014-CJGPB
  9. Praça-Fontes MM, Carvalho CR, Clarindo WR. Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Syst Evol. 2014;300(7):1621–1626. doi: 10.1007/s00606-014-0987-y
  10. Tayeh N, Aubert G, Pilet-Nayel ML, et al. Genomic tools in pea breeding programs: Status and perspectives. Front Plant Sci. 2015;6:1037. doi: 10.3389/fpls.2015.01037
  11. Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1
  12. Yang T, Liu R, Luo Y, et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet. 2022;54(10):1553–1563. doi: 10.1038/s41588-022-01172-2
  13. Li G, Liu R, Xu R, et al. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J. 2023;11(1):132–139. doi: 10.1016/j.cj.2022.04.011
  14. Shtark OY, Borisov AY, Zhukov VA, Tikhonovich IA. Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis. 2012;58(1):51–62. doi: 10.1007/s13199-013-0226-2
  15. Provorov NA, Tikhonovich IA. Agricultural microbiology and symbiogenetics: synthesis of classical ideas and construction of high-Ly productive agrocenoses (review). Agricultural Biology. 2022;57(5): 821–831. doi: 10.15389/agrobiology.2022.5.821rus EDN: IJQJAC
  16. Zipfel C, Oldroyd GED. Plant signalling in symbiosis and immunity. Nature. 2017;543(7645):328–336. doi: 10.1038/nature22009
  17. Oldroyd GED, Dixon R. Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol. 2014;26:19–24. doi: 10.1016/j.copbio.2013.08.006
  18. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987
  19. Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x
  20. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–182. doi: 10.1007/s00239-004-0046-3
  21. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–2561. doi: 10.1099/mic.0.28048-0
  22. Lander ES. The heroes of CRISPR. Cell. 2016;164(1–2): 18–28. doi: 10.1016/j.cell.2015.12.041
  23. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712. doi: 10.1126/science.1138140
  24. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891): 960–964. doi: 10.1126/science.1159689
  25. Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1(1):7. doi: 10.1186/1745-6150-1-7
  26. Garneau JE, Dupuis M-È, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71. doi: 10.1038/nature09523
  27. Horvath P, Romero DA, Coûté-Monvoisin A-C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophiles. J Bacteriol. 2008;190(4):1401–1412. doi: 10.1128/JB.01415-07
  28. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322(5909):1843–1845. doi: 10.1126/science.1165771
  29. Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–607. doi: 10.1038/nature09886
  30. Jinek M, Chylinski K, Fonfara I, et al. A programmable Dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829
  31. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS USA. 2012;109(39):E2579–E2586. doi: 10.1073/pnas.1208507109
  32. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143
  33. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. doi: 10.1126/science.1232033
  34. Li J-F, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–691. doi: 10.1038/nbt.2654
  35. Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8): 686–688. doi: 10.1038/nbt.2650
  36. Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691–693. doi: 10.1038/nbt.2655
  37. Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. doi: 10.1126/science.1247997
  38. Ran FA, Hsu PD, Lin C-Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–1389. doi: 10.1016/j.cell.2013.08.021
  39. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46(1):505–529. doi: 10.1146/annurev-biophys-062215-010822
  40. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096
  41. Jiang F, Zhou K, Ma L, et al. A Cas9-guide RNA complex preorganized for target DNA recognition. Science. 2015;348(6242): 1477–1481. doi: 10.1126/science.aab1452
  42. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA End-joining pathway. Annu Rev Biochem. 2010;79(1):181–211. doi: 10.1146/annurev.biochem.052308.093131
  43. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77(1):229–257. doi: 10.1146/annurev.biochem.77.061306.125255
  44. Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424. doi: 10.1038/nature17946
  45. Gaudelli NM, Komor AC, Rees HA, et al. Publisher correction: programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2018;559(7714):E8. doi: 10.1038/s41586-018-0070-x
  46. Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol. 2020;38(7):875–882. doi: 10.1038/s41587-019-0393-7
  47. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. doi: 10.1038/s41586-019-1711-4
  48. Kantsurova ES, Kozlov NV, Dolgikh EA. Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological Genetics. 2024;22(1):63–74. doi: 10.17816/ecogen623140 EDN: LYTNRL
  49. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9(1):39. doi: 10.1186/1746-4811-9-39
  50. Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol. 2020;21(11): 661–677. doi: 10.1038/s41580-020-00288-9
  51. Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv. 2019;37(7):107405. doi: 10.1016/j.biotechadv.2019.06.004
  52. Rogers SG, Klee HJ, Horsch RB, Fraley RT. Improved vectors for plant transformation: Expression cassette vectors and new selectable markers. Methods in Enzymol. 1987;153:253–277. doi: 10.1016/0076-6879(87)53058-0
  53. Altpeter F, Springer NM, Bartley LE, et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28(7): 1510–1520. doi: 10.1105/tpc.16.00196
  54. Ellison EE, Nagalakshmi U, Gamo ME, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants. 2020;6(6):620–624. doi: 10.1038/s41477-020-0670-y
  55. Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60(5):490–505. doi: 10.1007/s11427-017-9022-1
  56. Ludvíková M, Griga M. Pea transformation: History, current status and challenges. Czech J Genet Plant Breed. 2022;58(3):127–161. doi: 10.17221/24/2022-CJGPB
  57. Rubluo A, Kartha KK, Mroginski LA, Dyck J. Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. J Plant Physiol. 1984;117(2):119–130. doi: 10.1016/S0176-1617(84)80024-3
  58. Lutova LA, Zabelina EK. Callus and shoot formation in different forms of Pisum sativum L. in vitro. Genetica. 1988;24:1632–1640.
  59. Ezhova TA, Bagrova AM, Gostimskij SA. Shoot transformation in callus tissues derived from stem apices, epicotyls, stem internodes, and leaves of various pea genotypes. Fiziologija Rastenij. 1985;32:513–520.
  60. Aftabi M, Teressa Negawo A, Hassan F. Improved protocol for agrobacterium-mediated transformation of Pea (Pisum sativum). Mol Biol. 2017;7(1):1000202. doi: 10.4172/2168-9547.1000202
  61. Grant J, Cooper P. Peas (Pisum sativum L.). In: Wang K, editor. Agrobacterium protocols. Methods in molecular biology. Vol. 343. Humana Press; 2006. P. 337–346. doi: 10.1385/1-59745-130-4:337
  62. Nadolska-Orczyk A, Orczyk W. Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed. 2000;6(2):185–194. doi: 10.1023/A:1009679908948
  63. Chowrira GM, Akella V, Fuerst PE, Lurquin PF. Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol. 1996;5(2):85–96. doi: 10.1007/BF02789058
  64. Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41–52. doi: 10.1016/j.biotechadv.2014.12.006
  65. Cardi T, Murovec J, Bakhsh A, et al. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trend Plant Sci. 2023;28(10):1144–1165. doi: 10.1016/j.tplants.2023.05.012
  66. Rosellini D. Selectable markers and reporter genes: A well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci. 2012;31(5):401–453. doi: 10.1080/07352689.2012.683373
  67. Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95–104. doi: 10.1016/j.biotechadv.2016.12.003
  68. Kumagai MH, Donson J, della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. PNAS USA. 1995;92(5):1679–1683. doi: 10.1073/pnas.92.5.1679
  69. Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777–786. doi: 10.1046/j.1365-313X.2002.01394.x
  70. Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10(8):e0136064. doi: 10.1371/journal.pone.0136064
  71. Kaur N, Alok A, Shivani, et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genom. 2018;18(1):89–99. doi: 10.1007/s10142-017-0577-5
  72. Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. PNAS USA. 2015;112(11):3570–3575. doi: 10.1073/pnas.1420294112
  73. Bhowmik P, Yan W, Hodgins C, et al. CRISPR/Cas9-mediated lipoxygenase gene-editing in yellow pea leads to major changes in fatty acid and flavor profiles. Front Plant Sci. 2023;14:1246905. doi: 10.3389/fpls.2023.1246905
  74. Jelen H. Food flavors: Chemical, sensory and technological properties. CRC Press; 2011. 504 p.
  75. Pandey PK, Bhowmik P, Kagale S. Optimized methods for random and targeted mutagenesis in field pea (Pisum sativum L.). Front Plant Sci. 2022;13:995542. doi: 10.3389/fpls.2022.995542
  76. Hodgins CL, Salama EM, Kumar R, et al. Creating saponin-free yellow pea seeds by CRISPR/Cas9-enabled mutagenesis on β-amyrin synthase. Plant Direct. 2024;8(1):e563. doi: 10.1002/pld3.563
  77. Heng L, Vincken J-P, van Koningsveld G, et al. Bitterness of saponins and their content in dry peas. J Sci Food Agric. 2006;86(8): 1225–1231. doi: 10.1002/jsfa.2473
  78. LeBlanc C, Zhang F, Mendez J, et al. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 2018;93(2):377–386. doi: 10.1111/tpj.13782
  79. Sun X, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep. 2015;5(1):10342. doi: 10.1038/srep10342
  80. Sulima AS, Zhukov VA. War and Peas: molecular bases of resistance to powdery mildew in Pea (Pisum sativum L.) and other legumes. Plants. 2022;11(3):339. doi: 10.3390/plants11030339
  81. Tikhonovich IA, Provorov NA. From plant-microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Ann Appl Biol. 2009;154(3):341–350. doi: 10.1111/j.1744-7348.2008.00306.x
  82. Cooper JE. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue: Early legume-rhizobia interactions. J Appl Microbiol. 2007;103(5):1355–1365. doi: 10.1111/j.1365-2672.2007.03366.x
  83. Shumilina J, Soboleva A, Abakumov E, et al. Signaling in legume-rhizobia symbiosis. Int J Mol Sci. 2023;24(24):17397. doi: 10.3390/ijms242417397
  84. Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev. 2000;64(1):180–201. doi: 10.1128/mmbr.64.1.180-201.2000
  85. Geurts R, Bisseling T. Rhizobium nod factor perception and signaling. Plant Cell. 2002;14(S1):S239–S249. doi: 10.1105/tpc.002451
  86. Peck MC, Fisher RF, Long SR. Diverse flavonoids stimulate nodd1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol. 2006;188(15):5417–5427. doi: 10.1128/JB.00376-06
  87. Larrainzar E, Riely BK, Kim SC, et al. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol. 2015;169(1):233–265. doi: 10.1104/pp.15.00350
  88. Bensmihen S, de Billy F, Gough C. Contribution of NFP LysM domains to the recognition of nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLOS ONE. 2011;6(11): e26114. doi: 10.1371/journal.pone.0026114
  89. Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet. 1998;32(1):33–57. doi: 10.1146/annurev.genet.32.1.33
  90. Mergaert P, Van Montagu M, Holsters M. Molecular mechanisms of Nod factor diversity. Mol Microbiol. 1997;25(5):811–817. doi: 10.1111/j.1365-2958.1997.mmi526.x
  91. Dénarié J, Debellé F, Promé J-C. rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503–535. doi: 10.1146/annurev.bi.65.070196.002443
  92. Sulima AS, Zhukov VA, Kulaeva OA, et al. New sources of Sym2A allele in the pea (Pisum sativum L.) carry the unique variant of candidate LysM-RLK gene LykX. PeerJ. 2019;7:e8070. doi: 10.7717/peerj.8070
  93. Stacey GS, Burris RH, Evans HJ. Biological nitrogen fixation. Springer science and business media; 1992.
  94. Geurts R, Xiao TT, Reinhold-Hurek B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trend Plant Sci. 2016;21(3): 199–208. doi: 10.1016/j.tplants.2016.01.012
  95. Razumovskaya ZG. Formation of nodules in different pea varieties. Microbiology. 1937;6(3):321–328. (In Russ.)
  96. Govorov LI. The peas of Afghanistan. Bull Appl Bot. 1928; 497–522.
  97. Lie TA, Timmermans PCJM. Host-genetic control of nitrogen fixation in the legume-Rhizobium symbiosis: complication in the genetic analysis due to maternal effects. Plant Soil. 1983;75(3): 449–453. doi: 10.1007/BF02369979
  98. Lie TA. Symbiotic specialisation in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan. Ann Appl Biol. 1978;88(3):462–465. doi: 10.1111/j.1744-7348.1978.tb00743.x
  99. Davis EO, Evans IJ, Johnston AWB. Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet. 1988;212(3):531–535. doi: 10.1007/BF00330860
  100. Provorov NA, Onishchuk OP. Evolutionary-genetic bases for symbiotic engineering in plants — a mini review. Agricultural Biology. 2018;53(3):464–474. doi: 10.15389/agrobiology.2018.3.464rus EDN: EACWHD
  101. Provorov NA, Tikhonovich IA. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Res Crop Evol. 2003;50(1):89–99. doi: 10.1023/A:1022957429160
  102. Onishchuk OP, Vorobyov NI, Provorov NA. Nodulation competitiveness of nodule bacteria: Genetic control and adaptive significance: Review. Appl Biochem Microbiol. 2017;53(2):131–139. doi: 10.1134/S0003683817020132
  103. Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia — the roots of a success story. Curr Opin Plant Biol. 2018;44:7–15. doi: 10.1016/j.pbi.2017.12.001
  104. Zhukov V, Radutoiu S, Madsen LH, et al. The Pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. MPMI. 2008;21(12):1600–1608. doi: 10.1094/MPMI-21-12-1600
  105. Young JPW, Matthews P. A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium. Heredity. 1982;48(2):203–210. doi: 10.1038/hdy.1982.26
  106. Lie TA. Host genes in Pisum sativum L. conferring resistance to European Rhizobium leguminosarum strains. Plant Soil. 1984;82(3):415–425. doi: 10.1007/BF02184279
  107. Geurts R, Heidstra R, Hadri E, et al. Sym2 of Pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 1997;115(2):351–359. doi: 10.1104/pp.115.2.351
  108. Kozik A. Fine mapping of the Sym2 locus of Pea Linkage group 1. Wageningen University and Research; 1996. 111 p.
  109. Kozik A, Heidstra R, Horvath B, et al. Pea lines carrying sym1 or sym2 can be nodulated by Rhizobium strains containing nodX; sym1 and sym2 are allelic. Plant Sci. 1995;108(1):41–49. doi: 10.1016/0168-9452(95)04123-C
  110. Sulima AS, Zhukov VA, Afonin AA, et al. Selection signatures in the first exon of paralogous receptor kinase genes from the Sym2 region of the Pisum sativum L. genome. Front Plant Sci. 2017;8:1957. doi: 10.3389/fpls.2017.01957
  111. Patent RUS No. 2815453/ 21.10.2023. Zhukov VA, Zhuravlev IY, Tikhonovich IA. Molecular genetic marker of CAPS type in pea plants Pisum sativum L. and method of identification of plants homozygous for the allele causing the formation of increased specificity towards symbiotic nodule bacteria. Available from: https://fips.ru/EGD/8d1092c2-fa04-4df7-add6-b975d7f5333a (In Russ.)
  112. Shtark OY, Danilova TN, Naumkina TS, et al. Analysis of Pea (Pisum sativum L.) source material for breeding of cultivars with high symbiotic potential and choice of criteria for its evaluation. Ecological genetics. 2006;4(2):22–28. doi: 10.17816/ecogen4222-28 EDN: HZNUSV
  113. Zhukov VA, Zhernakov AI, Kulaeva OA, et al. De Novo Assembly of the Pea (Pisum sativum L.) nodule transcriptome. Int J Genom. 2015;2015:695947. doi: 10.1155/2015/695947
  114. Dorosinsky LM. Tuberous bacteria and nitragin. Moscow: Kolos; 1970. (In Russ.)
  115. Provorov NA, Simarov BV. Genetic polymorphism of legume crops on the ability to symbiosis with nodule bacteria. Genetika. 1992;28(6):5–14. EDN: YPIMBT (In Russ.)
  116. Lugtenberg BJJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol. 2001;39(1):461–490. doi: 10.1146/annurev.phyto.39.1.461
  117. McGuire AV, Northfield TD. Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front Sustain Food Syst. 2020;4:6. doi: 10.3389/fsufs.2020.00006
  118. Chetkova SA, Tikhonovich IA. Isolation and investigation of Rhizobium leguminosarum strains effective on peas of Afghan origin. Microbiology. 1986;(13):124–129.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanism of the CRISPR/Cas9 Editing System. The drawing was created using the online tool bioRender (https://biorender.com/).

Download (135KB)
3. Fig. 2. Mechanism of CRISPR/Cas9 Prime Editing. The drawing was created using the online tool bioRender (https://biorender.com/).

Download (198KB)
4. Fig. 3. General progression of steps for obtaining a plant with an edited genome using pea as an example. The drawing was created using the online tool bioRender (https://biorender.com/).

Download (108KB)
5. Fig. 4. Schematic representation of signal exchange between symbionts in legume-rhizobial symbiosis (a–b), including stages of nodule formation (1–6). 1, penetration of rhizobia through the root hair; 2, initiation of infection, with rhizobia moving into the root hair; 3, curling of the root hair, formation of the infection thread; 4, growth of the infection thread through epidermal cells; 5, infection thread reaches the root cortex cells; 6, formation of the symbiotic nodule. The drawing was created using the online tool bioRender (https://biorender.com/).

Download (313KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.