Application of Quantitative Trait Loci (QTL) mapping to study the interactions of pea (Pisum sativum L.) with rhizosphere microorganisms

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review is devoted to the application of quantitative trait loci (QTL) analysis to study the interactions of common pea (Pisum sativum L.), one of the most important grain legumes, with soil microorganisms. Pea, like other legumes, forms symbioses with nodule bacteria and arbuscular mycorrhiza fungi. The formation of symbioses leads to improved nitrogen and phosphorus nutrition of plants, resulting in increased plant resistance to abiotic and biotic stress factors, in particular, to phytopathogens. The main objective of QTL analysis is to identify genomic regions whose allelic state affects the manifestation of quantitative traits, including such traits as nitrogen fixation efficiency and pathogen resistance. The identified QTLs and molecular markers created on their basis can be used in the selection of new pea varieties with improved agronomic characteristics, such as resistance to changing environmental conditions and high efficiency of symbiotic systems. This article reviews the historical stages of the emergence of QTL analysis, the basic principles of QTL mapping, and modern approaches. The need for an integrated approach to the analysis of the characteristics of symbiosis efficiency and stability is noted, and the use of integrated phenotypic assessments for working with such traits is discussed.

Full Text

Restricted Access

About the authors

Aleksandr I. Zhernakov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: azhernakov@arriam.ru
ORCID iD: 0000-0001-8961-9317
Russian Federation, Saint Petersburg

Mikhail L. Gordon

All-Russia Research Institute for Agricultural Microbiology; N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: m.gordon.zelenoborsky@gmail.com
ORCID iD: 0000-0001-9637-9059
SPIN-code: 6385-2305
Russian Federation, Saint Petersburg; Saint Petersburg

Evgeny A. Zorin

All-Russia Research Institute for Agricultural Microbiology

Email: ezorin@arriam.ru
ORCID iD: 0000-0001-5666-3020
SPIN-code: 5048-0203

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Anton S. Sulima

All-Russia Research Institute for Agricultural Microbiology

Email: asulima@arriam.ru
ORCID iD: 0000-0002-2300-857X
SPIN-code: 4906-1159

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Vladimir A. Zhukov

All-Russia Research Institute for Agricultural Microbiology; N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: vzhukov@arriam.ru
ORCID iD: 0000-0002-2411-9191
SPIN-code: 2610-3670

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Wallace JG, Rodgers-Melnick E, Buckler ES. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu Rev Genet. 2018;52(1):421–444. doi: 10.1146/annurev-genet-120116-024846
  2. Paran I, Zamir D. Quantitative traits in plants: beyond the QTL. Trends Genet. 2003;19(6):303–306. doi: 10.1016/S0168-9525(03)00117-3
  3. Liu Y, Zhu B, Tang J, et al. Epistatic interaction has the reverse effects with its constitutive quantitative trait loci. Sci Rep. 2024;14(1):18169. doi: 10.1038/s41598-024-69236-3
  4. Hasan N, Choudhary S, Naaz N, et al. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol. 2021;19(1):128. doi: 10.1186/s43141-021-00231-1
  5. Bastianelli D, Grosjean F, Peyronnet C, et al. Feeding value of pea (Pisum sativum L.) 1. Chemical composition of different categories of pea. Anim Sci. 1998;67(3):609–619. doi: 10.1017/S1357729800033051
  6. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutr. 2012;108(S1):S3–S10. doi: 10.1017/S0007114512000852
  7. Shanthakumar P, Klepacka J, Bains A, et al. The current situation of pea protein and its application in the food industry. Molecules. 2022;27(16):5354. doi: 10.3390/molecules27165354
  8. Smýkal P, Aubert G, Burstin J, et al. Pea (Pisum sativum L.) in the genomic era. Agronomy. 2012;2(2):74–115. doi: 10.3390/agronomy2020074
  9. Dowarah B, Gill SS, Agarwala N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J Plant Growth Regul. 2022;41(4):1429–1444. doi: 10.1007/s00344-021-10392-5
  10. Leppyanen IV, Shakhnazarova VY, Shtark OY, et al. Receptor-like kinase LYK9 in Pisum sativum L. Is the CERK1-Like receptor that controls both plant immunity and AM symbiosis development. Int J Mol Sci. 2017;19(1):8. doi: 10.3390/ijms19010008
  11. Jha AB, Gali KK, Alam Z, et al. Potential application of genomic technologies in breeding for fungal and oomycete disease resistance in pea. Agronomy. 2021;11(6):1260. doi: 10.3390/agronomy11061260
  12. Goyal RK, Mattoo AK, Schmidt MA. Rhizobial-host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol. 2021;12:669404. doi: 10.3389/fmicb.2021.669404
  13. Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1
  14. Shan Y. Beyond Mendelism and biometry. Stud Hist Philos Sci A. 2021;89:155–163. doi: 10.1016/j.shpsa.2021.08.014
  15. Barton NH, Etheridge AM, Véber A. The infinitesimal model: Definition, derivation, and implications. Theor Popul Biol. 2017;118:50–73. doi: 10.1016/j.tpb.2017.06.001
  16. Thoday JM. Location of polygenes. Nature. 1961;191(4786): 368–370. doi: 10.1038/191368a0
  17. Weeden NF, Muehlbauer FJ, Ladizinsky G. Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered. 1992;83(2):123–129. doi: 10.1093/oxfordjournals.jhered.a111171
  18. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14(13):1675–1680. doi: 10.1038/nbt1296-1675
  19. Dmitriev AA, Pushkova EN, Melnikova NV. Plant genome sequencing: modern technologies and novel opportunities for breeding. Molecular Biology. 2022;54(4):531–545. doi: 10.31857/S0026898422040048 EDN: NKLZQP
  20. Clauw P, Ellis TJ, Liu H-J, Sasaki E. Beyond the standard GWAS — A guide for plant biologists. Plant Cell Physiol. 2024; pcae079. doi: 10.1093/pcp/pcae079
  21. Zhang Y, Wang M, Li Z, et al. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs. Sci China Life Sci. 2024;67(6):1133–1154. doi: 10.1007/s11427-023-2522-8
  22. Abiola O, Angel JM, Avner P, et al. The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet. 2003;4(11):911–916. doi: 10.1038/nrg1206
  23. Kao C-H. Mapping quantitative trait loci using the experimental designs of recombinant inbred populations. Genetics. 2006;174(3):1373–1386. doi: 10.1534/genetics.106.056416
  24. Keurentjes JJB, Bentsink L, Alonso-Blanco C, et al. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics. 2007;175(2):891–905. doi: 10.1534/genetics.106.066423
  25. Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet. 1996;92(2):191–203. doi: 10.1007/BF00223376
  26. Filiault DL, Seymour DK, Maruthachalam R, Maloof JN. The generation of doubled haploid lines for QTL mapping. In: Busch W, editor. Plant genomics. Methods in molecular biology. Vol. 1610. New York: Humana Press; 2017. P. 39–57. doi: 10.1007/978-1-4939-7003-2_4
  27. Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol. 2008;11(2):215–221. doi: 10.1016/j.pbi.2008.01.002
  28. Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nested association mapping in maize. Genetics. 2008;178(1):539–551. doi: 10.1534/genetics.107.074245
  29. Amiteye S. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon. 2021;7(10):e08093. doi: 10.1016/j.heliyon.2021.e08093
  30. Tayeh N, Aluome C, Falque M, et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 2015;84(6):1257–1273. doi: 10.1111/tpj.13070
  31. Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379
  32. Miller MR, Dunham JP, Amores A, et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17(2):240–248. doi: 10.1101/gr.5681207
  33. Duarte J, Rivière N, Baranger A, et al. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genom. 2014;15(1):126. doi: 10.1186/1471-2164-15-126
  34. Zhernakov AI, Shtark OY, Kulaeva OA, et al. Mapping-by-sequencing using NGS-based 3’-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 (IPD3) in pea (Pisum sativum L.). PeerJ. 2019;7: e6662. doi: 10.7717/peerj.6662
  35. Zawada AM, Rogacev KS, Müller S, et al. Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics. 2014;9(1):161–172. doi: 10.4161/epi.26931
  36. Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS USA. 1991;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828
  37. Zheng Y, Xu F, Li Q, et al. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Front Genet. 2018;9:615. doi: 10.3389/fgene.2018.00615
  38. Zhao C, Zhang Y, Du J, et al. Crop phenomics: Current status and perspectives. Front Plant Sci. 2019;10:714. doi: 10.3389/fpls.2019.00714
  39. Klein A, Houtin H, Rond C, et al. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet. 2014;127(6):1319–1330. doi: 10.1007/s00122-014-2299-6
  40. Lavaud C, Baviere M, Le Roy G, et al. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC Plant Biol. 2016;16(1):166. doi: 10.1186/s12870-016-0822-4
  41. Bourion V, Rizvi SMH, Fournier S, et al. Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet. 2010;121(1):71–86. doi: 10.1007/s00122-010-1292-y
  42. Kaeppler SM, Parke JL, Mueller SM, et al. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci. 2000;40(2):358–364. doi: 10.2135/cropsci2000.402358x
  43. Shtark OY, Zhernakov AI, Kichigina NE, et al. Effect of mutations in the Sym7, Sym19 and Sym34 genes on the interaction of pea (Pisum sativum L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Ecological genetics. 2024;22(3):225–242. doi: 10.17816/ecogen624607 EDN: NAIZZI
  44. Zheng G, Yuan A, Li Q, Gastwirth JL. Single marker association analysis for unrelated samples. In: Elston R, editor. Statistical human genetics. Methods in molecular biology. Vol. 1666. New York: Humana Press; 2017. P. 375–389. doi: 10.1007/978-1-4939-7274-6_18
  45. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–199. doi: 10.1093/genetics/121.1.185
  46. Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447
  47. Kao C-H, Zeng Z-B, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics. 1999;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203
  48. Kulaeva OA, Zhernakov AI, Afonin AM, et al. Pea marker database (PMD) — a new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS ONE. 2017;12(10):e0186713. doi: 10.1371/journal.pone.0186713
  49. Dirlewanger E, Isaac PG, Ranade S, et al. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theoret Appl Genetics. 1994;88(1):17–27. doi: 10.1007/BF00222388
  50. Van Der Plank JE. Disease resistance in plants. New York: Academic Press; 1968. 206 p.
  51. Sulima AS, Zhukov VA. War and peas: Molecular bases of resistance to powdery mildew in pea (Pisum sativum L.) and other legumes. Plants. 2022;11(3):339. doi: 10.3390/plants11030339
  52. Timmerman-Vaughan GM, Moya L, Frew TJ, et al. Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet. 2016;129(5):879–896. doi: 10.1007/s00122-016-2669-3
  53. Jha AB, Gali KK, Tar’an B, Warkentin TD. Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci. 2017;8:765. doi: 10.3389/fpls.2017.00765
  54. Timmerman-Vaughan GM, Frew TJ, Butler R, et al. Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet. 2004;109(8):1620–1631. doi: 10.1007/s00122-004-1779-5
  55. Wu L, Fredua-Agyeman R, Hwang S-F, et al. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet. 2021;134(9):2965–2990. doi: 10.1007/s00122-021-03871-6
  56. Wu L, Fredua-Agyeman R, Strelkov SE, et al. Identification of quantitative trait loci associated with partial resistance to fusarium root rot and wilt caused by fusarium graminearum in field pea. Front Plant Sci. 2021;12:784593. doi: 10.3389/fpls.2021.784593
  57. Coyne CJ, Porter LD, Boutet G, et al. Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol. 2019;19(1):98. doi: 10.1186/s12870-019-1699-9
  58. Rai R, Singh AK, Singh BD, et al. Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet. 2011;123(5):803–813. doi: 10.1007/s00122-011-1628-2
  59. Ashtari Mahini R, Kumar A, Elias EM, et al. Analysis and identification of QTL for resistance to Sclerotinia sclerotiorum in pea (Pisum sativum L.). Front Genet. 2020;11:587968. doi: 10.3389/fgene.2020.587968
  60. Zhukov VA, Akhtemova GA, Zhernakov AI, et al. Evaluation of the symbiotic effectiveness of pea (Pisum sativum L.) genotypes in pot experiment. Agricultural Biology. 2017;52(3):607–614. doi: 10.15389/agrobiology.2017.3.607rus EDN: YZKVLX
  61. Zhukov VA, Zhernakov AI, Sulima AS, et al. Association study of symbiotic genes in pea (Pisum sativum L.) cultivars grown in symbiotic conditions. Agronomy. 2021;11(11):2368. doi: 10.3390/agronomy11112368
  62. Li D, Kinkema M, Gresshoff PM. Autoregulation of nodulation (AON) in Pisum sativum (pea) involves signalling events associated with both nodule primordia development and nitrogen fixation. J Plant Physiol. 2009;166(9):955–967. doi: 10.1016/j.jplph.2009.03.004
  63. Zipfel C, Oldroyd GED. Plant signalling in symbiosis and immunity. Nature. 2017;543(7645):328–336. doi: 10.1038/nature22009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.