EFFECT OF Rhizophagus irregularis INOCULATION ON AQUAPORIN GENE EXPRESSION IN THE ROOTS OF Medicago lupulina IN DROUGHT CONDITIONS



Cite item

Full Text

Abstract

Most terrestrial plants form a symbiosis with fungi of arbuscular mycorrhiza (AM). AM contributes to a significant increase in plant growth and their adaptation to environmental biotic and abiotic stress factors. AM fungi help plants to absorb minerals, improve the aquatic nutrition of the host plant. At the same time, the regulation and transport of water in plants is largely determined by the work of specific aquaporin transporters. An original study was conducted that included an assessment of changes in the expression level of aquaporin genes during the development of AM symbiosis and in the absence of one during various stages of the host plant development under drought conditions. The assessment was carried out in the aboveground organs of M. lupulina plants. It has been shown that the key genes involved in the mechanism of adaptation of mycorrhizal plants to drought may be NIP and TIP aquaporin genes, namely: genes MlNIP1;2, MlNIP1;3, MlNIP1;5, MlNIP4;1, MlNIP4;2 (mainly in the stage of development of the second leaf) and genes MlTIP1;1, MlTIP1;4, MlTIP2;1, MlTIP2;2, MlTIP2;3, MlTIP3;1, MlTIP4;1, MlTIP5;1 (mainly during the flowering stage) inM. lupulina + R. irregularis” microbial plant system. In the study, previously obtained data on the M. lupulina transcriptome were used to select target genes. The genes involved in the development of effective AM symbiosis in drought conditions have been identified. New information about the mechanisms of formation of effective AM is of practical importance for the development of highly productive microbial and plant systems that will allow the transition from intensive agrotechnologies to biological agriculture with the production of environmentally safe products.

Full Text

Restricted Access

About the authors

Alexey A. Kryukov

All-Russia Research Institute for Agricultural Microbiology

Email: aa.krukov@arriam.ru
SPIN-code: 4685-2723
Scopus Author ID: 57104771700

PhD (Candidate of Biology), Researcher, Laboratory No 4 of Ecology of Symbiotic and Associative Rhizobacteria

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Tatyana Ruslanovna Kudriashova

All-Russia Research Institute for Agricultural Microbiology

Email: t.kudryashova@arriam.ru
ORCID iD: 0000-0001-5120-7229
SPIN-code: 6716-9431

engineer-researcher, Laboratory #4 at All-Russia Research Institute for Agricultural Microbiology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Angelina Ivanovna Belyaeva

All-Russia Research Institute for Agricultural Microbiology

Email: angelkapustnikova@yandex.ru

engineer-researcher, Laboratory #4 at All-Russia Research Institute for Agricultural Microbiology

Russian Federation, sh. Podbel’skogo 3, St. Petersburg, 196608 Russia

Anastasia Igorevna Gorenkova

All-Russia Research Institute for Agricultural Microbiology

Email: nastya.gorenkova.2016@mail.ru

engineer-researcher, Laboratory #4 at All-Russia Research Institute for Agricultural Microbiology

sh. Podbel’skogo 3, St. Petersburg, 196608 Russia

Andrey Pavlovich Yurkov

ФГБНУ Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии; ФГБОУ Санкт-Петербургский государственный университет; ФГБОУ Российский государственный гидрометеорологический университет

Author for correspondence.
Email: yurkovandrey@yandex.ru
ORCID iD: 0000-0002-2231-6466
SPIN-code: 9909-4280
Scopus Author ID: 56835374200
ResearcherId: A-8513-2014

assistant professor, Leading Researcher, Laboratory #4 at All-Russia Research Institute for Agricultural Microbiology

Russian Federation, sh. Podbel’skogo 3, St. Petersburg, 196608 Russia

References

  1. Mammadov J, Buyyarapu R, Guttikonda S, et al. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Front. Plant Sci. 2018;9:886. doi: 10.3389/fpls.2018.00886
  2. Luo Y, Ma L, Du W, et al. Identification and Characterization of Salt- and Drought-Responsive AQP Family Genes in Medicago sativa L. IJMS. 2022;23(6):3342. doi: 10.3390/ijms23063342
  3. Bárzana G, Aroca R, Bienert GP, et al. New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants Under Drought Stress and Possible Implications for Plant Performance. MPMI. 2014;27(4):349-363. doi: 10.1094/MPMI-09-13-0268-R
  4. Maurel C, Boursiac Y, Luu DT, et al. Aquaporins in plants. Physiol. Rev. 2015;95(4):1321–1358. doi: 10.1152/physrev.00008.2015
  5. Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol. Res. 2018;51(1):1–11. doi: 10.1186/s40659-018-0152-0
  6. Zhou X, Yi D, Ma L, Wang X. Genome-wide analysis and expression of the aquaporin gene family in Avena sativa L. Front Plant Sci. 2024;14:1305299. doi: 10.3389/fpls.2023.1305299
  7. Laloux T, Junqueira B, Maistriaux L, et al. Plant and Mammal Aquaporins: Same but Different. IJMS. 2018;19(2):521. doi: 10.3390/ijms19020521
  8. Danielson JÅ, Johanson U. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008;8(1):45. doi: 10.1186/1471-2229-8-45
  9. Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(5):1468-1481. doi: 10.1016/j.bbagen.2013.12.001
  10. Yaneff A, Sigaut L, Marquez M, et al. Heteromerization of PIP aquaporins affects their intrinsic permeability. Proc Natl Acad Sci USA. 2014;111(1):231-236. doi: 10.1073/pnas.1316537111
  11. Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2006;1758(8):1134-1141. doi: 10.1016/j.bbamem.2006.03.012
  12. Maurel C, Verdoucq L, Luu DT, Santoni V. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annu Rev Plant Biol. 2008;59(1):595-624. doi: 10.1146/annurev.arplant.59.032607.092734
  13. Johnson KD, Höfte H, Chrispeels MJ. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell. 1990;2(6):525-532. doi: 10.1105/tpc.2.6.525
  14. Lopez-Zaplana A, Bárzana G, Ding L, et al. Aquaporins involvement in the regulation of melon (Cucumis melo L.) fruit cracking under different nutrient (Ca, B and Zn) treatments. Environ. Exp. Bot. 2022;201. doi: 10.1016/j.envexpbot.2022.104981
  15. Loqué D, Ludewig U, Yuan L, Von Wirén N. Tonoplast Intrinsic Proteins AtTIP2;1 and AtTIP2;3 Facilitate NH3 Transport into the Vacuole. Plant Physiology. 2005;137(2):671-680. doi: 10.1104/pp.104.051268
  16. Fleurat-Lessard P, Michonneau P, Maeshima M, et al.. The Distribution of Aquaporin Subtypes (PIP1, PIP2 and γ-TIP) is Tissue Dependent in Soybean (Glycine max) Root Nodules. Annals of Botany. 2005;96(3):457-460. doi: 10.1093/aob/mci195
  17. Fortin MG, Morrison NA, Verma DPS. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res. 1987;15(2):813–824. doi: 10.1093/nar/15.2.813
  18. Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol. 2006;7(2):206. doi: 10.1186/gb-2006-7-2-206
  19. Pommerrenig B, Diehn TA, Bienert GP. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Science. 2015;238:212-227. doi: 10.1016/j.plantsci.2015.06.002
  20. Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2;1 is Mainly Localized to the ER Membrane and Shows Root-Specific Accumulation in Arabidopsis thaliana. Plant and Cell Physiology. 2006;47(10):1420-1426. doi: 10.1093/pcp/pcl004
  21. Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature. 2006;440(7084):688-691. doi: 10.1038/nature04590
  22. Lopez D, Amira MB, Brown D, et al. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Mol Biol. 2016;91(4-5):375-396. doi: 10.1007/s11103-016-0462-y
  23. Hussain A, Tanveer R, Mustafa G, et al. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics. 2020;112(1):263–275. https://doi.org/10.1016/j.ygeno.2019.02.005
  24. Ishikawa F, Suga S, Uemura T, et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579(25):5814–5820. https://doi.org/10.1016/j.febslet.2005.09.076
  25. Noronha H, Araújo D, Conde C, et al. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water. PLoS ONE. 2016;11(8):e0160976. doi: 10.1371/journal.pone.0160976
  26. Jia Y, Liu X. Polyploidization and pseudogenization in allotetraploid frog Xenopus laevis promote the evolution of aquaporin family in higher vertebrates. BMC Genomics. 2020;21(1):525. doi: 10.1186/s12864-020-06942-y
  27. Qadir M, Hussain A, Iqbal A, et al. Microbial Utilization to Nurture Robust Agroecosystems for Food Security. Agronomy. 2024;14(9):1891. https://doi.org/10.3390/agronomy14091891
  28. Yurkov AP, Kryukov AA, Gorbunova AO, et al. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. JoF. 2023;10(1):11. doi: 10.3390/jof10010011
  29. Yurkov AP, Jacobi LM, Gapeeva NE, et al. Development of arbuscular mycorrhiza in highly responsive and mycotrophic host plant–black medick (Medicago lupulina L.). Russ J Dev Biol. 2015;46(5):263-275. doi: 10.1134/S1062360415050082
  30. Yurkov A, Kryukov A, Gorbunova A, et al. AM-Induced Alteration in the Expression of Genes, Encoding Phosphorus Transporters and Enzymes of Carbohydrate Metabolism in Medicago lupulina. Plants. 2020;9(4):486. doi: 10.3390/plants9040486
  31. Min X, Wu H, Zhang Z, et al. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. J. Plant Biochem Biotechnol. 2019;28(3):320-335. doi: 10.1007/s13562-018-0484-4
  32. MacRae E. Extraction of Plant RNA. Protocols for Nucleic Acid Analysis by Nonradioactive Probes. 2007;15–24. doi: 10.1385/1-59745-229-7:15
  33. Yurkov AP, Puzanskiy RK, Avdeeva GS, et al. Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. Plants. 2021;10(11):2506. doi: 10.3390/plants10112506
  34. Martynenko E, Arkhipova T, Akhiyarova G, et al. Effects of a Pseudomonas Strain on the Lipid Transfer Proteins, Appoplast Barriers and Activity of Aquaporins Associated with Hydraulic Conductance of Pea Plants. Membranes. 2023;13(2):208. doi: 10.3390/membranes13020208
  35. Ding M, Li J, Fan X, et al. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Curr Genet. 2018;64(5):1057-1069. doi: 10.1007/s00294-018-0818-8
  36. Li G, Chen T, Zhang Z, et al.. Roles of Aquaporins in Plant-Pathogen Interaction. Plants. 2020;9(9):1134. doi: 10.3390/plants9091134
  37. Spatafora JW, Chang Y, Benny GL, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028-1046. doi: 10.3852/16-042
  38. Ni Y, Bao H, Zou R, et al. Aquaporin ZmPIP2;4 promotes tolerance to drought during arbuscular mycorrhizal fungi symbiosis. Plant Soil. Published online June 25, 2024. doi: 10.1007/s11104-024-06778-5
  39. Asadollahi M, Iranbakhsh A, Ahmadvand R, et al. Synergetic effect of water deficit and arbuscular mycorrhizal symbiosis on the expression of aquaporins in wheat (Triticum aestivum L.) roots: insights from NGS RNA-sequencing. Physiol Mol Biol Plants. 2023;29(2):195-208. doi: 10.1007/s12298-023-01285-w
  40. Kakouridis A, Hagen JA, Kan MP, et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist. 2022;236(1):210-221. doi: 10.1111/nph.18281
  41. Mashini AG, Oakley CA, Grossman AR, et al.. Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis. Villanueva L, ed. Appl Environ Microbiol. 2022;88(12):e00412-22. doi: 10.1128/aem.00412-22
  42. Wang D, Ni Y, Xie K, et al. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. IJMS. 2024;25(8):4205. doi: 10.3390/ijms25084205

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.