GENETIC CONTROL AND MOLECULAR MARKERS OF SUGAR BEET RESISTANCE TO PATHOGENS
- Authors: Smirnova O.1, Khakimov M.1,2, Salina E.A.1
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Section: Methodology in ecological genetics
- Submitted: 07.07.2025
- Accepted: 04.09.2025
- Published: 30.09.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/686877
- DOI: https://doi.org/10.17816/ecogen686877
- ID: 686877
Cite item
Full Text
Abstract
Sugar beet is the only crop used for industrial sugar production in countries with temperate climates. Creation of varieties resistant to viral, bacterial, fungal infections and nematodes allows maintaining the yield and quality of root crops. Modern selection is based on knowledge of the genetics of target traits and the use of methods of their molecular marking. This approach speeds up selection work several times due to the possibility of quickly assessing the source material and hybrid offspring. The review provides current information on the genetic control of resistance to rhizomania, root rot, rhizoctonia, fusarium, nematodes, powdery mildew, cercospora leaf spot, bacterial leaf spot and on molecular markers associated with resistance to pathogens. Data from a genome-wide association study to identify single nucleotide substitutions in resistance-associated genes are presented. The interaction of genes located in different chromosomes of sugar beet, leading to an increase in the defense response during rhizomania, is described. The presented information on the genetics of disease resistance and on molecular markers is important for sugar beet selection.
Full Text

About the authors
Olga Smirnova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Email: planta@bionet.nsc.ru
ORCID iD: 0000-0002-3023-767X
кандидат биологических наук, старший научный сотрудник лаборатории генной инженерии
Russian Federation, RUSSIAN FEDERATION 630090 Novosibirsk Prospekt Lavrentyeva 10Mukhammadali Khakimov
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: ali941220@gmail.com
ORCID iD: 0000-0002-0336-8324
Graduate Student
Russian Federation, RUSSIAN FEDERATION 630090 Novosibirsk Prospekt Lavrentyeva 10; RUSSIAN FEDERATION 630090, Novosibirsk, Pirogov st., 1Elena Artemovna Salina
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: salina@bionet.nsc.ru
ORCID iD: 0000-0001-8590-847X
SPIN-code: 5782-4546
Dr. Sci. (Biology), Professor; Corresponding Member of the Russian Academy of Sciences, Chief Researcher of the Laboratory of Molecular Genetics and Plant Cytogenetics
Russian Federation, RUSSIAN FEDERATION 630090 Novosibirsk Prospekt Lavrentyeva 10References
- Tayyab M, Wakeel A, Mubarak MU, Artyszak A, Ali S, Hakki EE, Mahmood K, Song B., Ishfaq M. Sugar beet cultivation in the tropics and subtropics: Challenges and opportunities. Agronomy. 2023;13(5):1213. DOI: https://doi.org/10.3390/agronomy13051213 EDN: VDZERR
- Panella L, Lewellen RT. Broadening the genetic base of sugar beet: Introgression from wild relatives. Euphytica. 2007;154(3):383–400. DOI: https://doi.org/10.1007/s10681-006-9209-1 EDN: YAFXMZ
- Tehseen MM, Poore RC, Fugate KK, Bolton MD, Ramachandran V, Wyatt NA, Li X, Chu C. Potential of publicly available Beta vulgaris germplasm for sustainable sugar beet improvement indicated by combining analysis of genetic diversity and historic resistance evaluation. Crop Sci. 2023;63(4):2255–2273. DOI: https://doi.org/10.1002/csc2.20978
- McGrath JM, Funk A, Galewski P, Ou S, Townsend B, Davenport K, Daligault H, Johnson S, Lee J, Hastie A, Darracq A, Willems G, Barnes S, Liachko I, Sullivan S, Koren S, Phillippy A, Wang J, Liu T, Pulman J, Childs K, Shu S, Yocum A, Fermin D, Mutasa-Göttgens E, Stevanato P, Taguchi K, Naegele R, Dorn KM. A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.). DNA Res. 2023;30(1):dsac033. DOI: https://doi.org/10.1093/dnares/dsac033
- Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2014;505(7484):546–549. DOI: https://doi.org/10.1038/nature12817
- Wigg KS, Brainard SH, Metz N, Dorn KM, Goldman IL. Novel QTL associated with Rhizoctonia solani Kühn resistance identified in two table beet × sugar beet F2:3 populations using a new table beet reference genome. Crop Sci. 2023;63(2):535–555. DOI: https://doi.org/10.1002/csc2.20865
- Khlestkina EK. Molecular markers in genetic studies and breeding. Vavilov J Genet Breed. 2013, 17(4/2):1044–1054 (in Russ). EDN: RVGWOT
- Fedulova TP, Hussein AS, Nalbandyan AA. Perspective strategy of using molecular markers in breeding of Beta vulgaris L. (review). Agrarian Bulletin of the Urals. 2023;02(231):71‒82 (in Russ). DOI: https://doi.org/10.32417/1997-4868-2023-231-02-71-82 EDN: RCNSSM
- Fedulova TP, Nalbandyan AA. Molekulyarnoe markirovanie v selektsii sakharnoi svekly. Sahar. 2023; 3:24–27 (in Russ). DOI: https://doi.org/10.24412/2413-5518-2023-3-24-27
- De Biaggi M, Stevanato P, Trebbi D, Saccomani M, Biancardi E. Sugar beet resistance to rhizomania: State of the art and perspectives. Sugar Tech. 2010;12(3-4):238–242. DOI: https://doi.org/10.1007/s12355-010-0047-z EDN: YDELQB
- Scholten OE, De Bock TS, Klein-Lankhorst RM, Lange W. Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet. 1999;99(3-4):740–746. DOI: https://doi.org/10.1007/s001220051292 EDN: AVWFRT
- Norouzi P, Sabzehzari M, Zeinali H. Efficiency of some molecular markers linked to rhizomania resistance gene (Rz1) for marker assisted selection in sugar beet. J Crop Sci Biotech. 2015;18(5):319–323. DOI: https://doi.org/10.1007/s12892-015-0033-9
- Gidner S, Lennefors B-L, Nilsson N-O, Bensefelt J, Johansson E, Gyllenspetz U, Kraft T. QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome. 2005;48(2):279–285. DOI: https://doi.org/10.1139/g04-108
- Grimmer MK, Trybush S, Hanley S, Francis SA, Karp A, Asher MJC. An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theor Appl Genet. 2007;114(7):1151–1160. DOI: https://doi.org/10.1007/s00122-007-0507-3 EDN: QORTVL
- Grimmer MK, Kraft T, Francis SA, Asher MJC. QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breeding. 2008;127(6):650–652. DOI: https://doi.org/10.1111/j.1439-0523.2008.01539.x
- Paul HB, Henken B, Scholten OE, Lange W. Use of zoospores of Polymyxa betae in screening beet seedlings for resistance to beet necrotic yellow vein virus. Neth J Plant Path. 1993;99(Suppl.3):151–160. DOI: https://doi.org/10.1007/bf03041405 EDN: QOLIZV
- Scholten OE, Jansen RC, Paul Keizer LC, De Bock TSM, Lange W. Major genes for resistance to beet necrotic yellow vein virus (BNYVV) in Beta vulgaris. Euphytica. 1996;91(3):331–339. DOI: https://doi.org/10.1007/BF00033095 EDN: AJNCOV
- Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm J., González I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schütze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun. 2017;8(1):15708. DOI: https://doi.org/10.1038/ncomms15708
- Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. Mol Plant Pathol. 2021;22(7):829–842. DOI: https://doi.org/10.1111/mpp.13066 EDN: NGEHSN
- McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol. 2009;10(1):129–141. DOI: https://doi.org/10.1111/j.1364-3703.2008.00514.x EDN: YAKGRR
- Benjes K, Varrelmann M, Liebe S. Control of rhizomania in sugar beet – A success story made possible by resistance breeding. Plant Pathology. 2024;73(9);2248–2259. DOI: https://doi.org/10.1111/ppa.14007
- Broccanello C, McGrath JM, Panella L, Richardson K, Funk A, Chiodi C, Biscarini F, Barone V, Baglieri A, Squartini A, Concheri G, Stevanato P. A SNP mutation affects rhizomania-virus content of sugar beets grown on resistance-breaking soils. Euphytica. 2018;214:14. DOI: https://doi.org/10.1007/s10681-017-2098-7 EDN: UXNRNU
- Lange TM, Heinrich F, Kopisch-Obuch F, Keunecke H, Gültas M, Schmitt AO. Improving genomic prediction of rhizomania resistance in sugar beet (Beta vulgaris L.) by implementing epistatic effects and feature selection. F1000Research. 2024;12:280. DOI: https://doi.org/10.12688/f1000research.131134.2
- Stevanato P, Trebbi D, Norouzi P, Broccanello C, Saccomani M. Identification of SNP markers linked to the Rz1 gene in sugar beet. Inter Sugar J. 2012,114(1366):715–718.
- Nalbandyan AA, Fedulova TP, Hussein AS. Molecular selection of Beta vulgaris L. breeding materials with genes of resistance to abiotic stresses. Russian Agricultural Sciences. 2019;45(2):119–123. DOI: https://doi.org/10.3103/S1068367419020174
- Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C. Mapping of rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breeding. 2008;127:602–611. DOI: https://doi.org/10.1111/j.1439-0523.2008.01525.x
- Holmquist L, Dölfors F, Fogelqvist J, Cohn J, Kraft T, Dixelius C. Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Mol Genet Genomics. 2021;296(1):155–164. DOI: https://doi.org/10.1007/s00438-020-01735-0 EDN: OWYAFB
- Ravi S, Hassani M, Heidari B, Deb S, Orsini E, Li J, Richards CM, Panella LW, Srinivasan S, Campagna G, Concheri G, Squartini A, Stevanato P. Development of an SNP assay for marker-assisted selection of soil-borne Rhizoctonia solani AG-2-2-IIIB resistance in sugar beet. Biology (Basel). 2022;11(1):49. DOI: https://doi.org/10.3390/biology11010049 EDN: ZYILES
- Janssen GJW, Nihlgard M, Kraft T. Mapping of resistance genes to powdery mildew (Erysiphe betae) in sugar beet. Int Sugar J. 2003;105:448-451
- Grimmer MK, Bean KM, Asher MJ. Mapping of five resistance genes to sugar-beet powdery mildew using AFLP and anchored SNP markers. Theor Appl Genet. 2007;115(1):67–75. DOI: https://doi.org/10.1007/s00122-007-0541-1 EDN: BCPAWZ
- Fedulova TP, Rudenko TS. Molekulyarnye variatsii gena ustoichivosti k muchnistoi rose PMR5 u genotipov sakharnoi svekly (in Russ). Sahar. 2024;3:30–33. DOI: https://doi.org/10.24412/2413-5518-2024-3-30-33, EDN: GQGRCL
- Taguchi K, Kubo T, Takahashi H, Abe H. Identification and precise mapping of resistant QTLs of cercospora leaf spot resistance in sugar beet (Beta vulgaris L.). G3: Genes, Genomes, Genetics. 2011;1(4):283–291. DOI: https://doi.org/10.1534/g3.111.000513
- Dhiman AS, Emrani N, Holtgrewe-Stukenbrock E, Varrelmann M, Jung C. Uncovering genes essential in domestication and breeding of sugar beet. bioRxiv. 2024. DOI: https://doi.org/10.1101/2024.12.02.626358
- Schäfer-Pregl R, Borchardt D, Barzen E, Glass C, Mechelke W, Seitzer JF, Salamini F. Localization of QTLs for tolerance to Cercospora beticola on sugar beet linkage groups. Theor Appl Genet 1999, 99, 829–836. DOI: https://doi.org/10.1007/s001220051302 EDN: AVWFVP
- Törjék O, Borchardt D, Mechelke W, Schulz B, Lein JC. Plant resistance gene and means for its identification. WIPO patent WO2022037967. 2022 Feb 24.
- Chen C, Keunecke H, Neu E, Kopisch-Obuch FJ, McDonald BA, Stapley J. Molecular epidemiology of Cercospora leaf spot on resistant and susceptible sugar beet hybrids. Plant Pathol. 2025; 74(1), 69–83. DOI: https://doi.org/10.1111/ppa.13998 EDN: MVJQQA
- Abd El-Fatah BES, Hashem M, Abo-Elyousr KAM, Khalil Bagy HMM, Alamri SAM. Genetic and biochemical variations among sugar beet cultivars resistant to Cercospora leaf spot. Physiol. Mol Plant Pathol. 2020;109:101455. DOI: https://doi.org/10.1016/j.pmpp.2019.101455 EDN: FMRZFG
- Morrison AK, Goldman IL. Chromosome 1 QTLs associated with response to bacterial leaf spot in Beta vulgaris. Crop Sci. 2025;65(1):e21448. DOI: https://doi.org/10.1002/csc2.21448 EDN: JBJVEE
- Rossi V. Exploring resistance to Aphanomyces cochlioides in sugar beet. Acta Universitatis Agriculturae Sueciae. 2023; 2023:45. DOI: https://doi.org/10.54612/a.1u3lpfp6df
- Taguchi K, Okazaki K, Takahashi H, Kubo T, Mikami T. Molecular mapping of a gene conferring resistance to Aphanomyces root rot (black root) in sugar beet (Beta vulgaris L.). Euphytica. 2010;173(3):409–418. DOI: https://doi.org/10.1007/s10681-010-0153-8
- De Lucchi C, Stevanato P, Hanson L, McGrath M, Panella L, De Biaggi M, Broccanello C, Bertaggia M, Sella L, Concheri G. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet. Euphytica. 2017;213(3):71. DOI: https://doi.org/10.1007/s10681-017-1859-7
- Yerzhebayeva R, Abekova A, Konysbekov K, Bastaubayeva S, Kabdrakhmanova A, Absattarova A, Shavrukov Y. Two sugar beet chitinase genes, BvSP2 and BvSE2, analysed with SNP Amplifluor-like markers, are highly expressed after Fusarium root rot inoculations and field susceptibility trial. PeerJ. 2018;6:e5127. DOI: https://doi.org/10.7717/peerj.5127 EDN: PVKPJX
- Nalbandyan AA, Hussein AS, Fedulova TP, Rudenko TS, Mikheeva NR, Selivanova GA. Studying of the acid chitinase SE2 gene in sugar beet genotypes. Agrarian science. 2021;(4):88–90 (in Russ). DOI: https://doi.org/10.32634/0869-8155-2021-348-4-88-90 EDN: VTKXUJ
- Richardson KL. Registration of sugar beet mapping populations CN239, CN240, and CN241 segregating for resistance to Heterodera schachtii from sea beet. J Plant Regist. 2022;16(2):459–464. DOI: https://doi.org/10.1002/plr2.20152 EDN: APDNNE
- Vandenbossche BAB, Niere B, Vidal S. Effect of temperature on the hatch of two german populations of the beet cyst nematodes, Heterodera schachtii and Heterodera betae. J Plant Diseases Protection. 2015;122(5):250–254. DOI: https://doi.org/https://doi.org/10.1007/BF03356560 EDN: VTJHZI
- Kleine M, Voss H, Cai D, Jung C. Evaluation of nematode-resistant sugar beet (Beta vulgaris L.) lines by molecular analysis. Theor Appl Genet. 1998;97(5):896–904. DOI: https://doi.org/10.1007/s001220050970
- Tang G, Zhong X, Hong W, Li J, Shu Y, Liu L. Generation and identification of the number of copies of exogenous genes and the T-DNA insertion site in SCN-resistance transformation event ZHs1-2. Int J Mol Sci. 2022;23(12):6849. DOI: https://doi.org/10.3390/ijms23126849 EDN: QFHXFE
- Stevanato P, Trebbi D, Panella L, Richardson K, Broccanello C, Pakish L, Fenwick AL, Saccomani M. Identification and validation of a SNP marker linked to the gene HsBvm-1 for nematode resistance in sugar beet. Plant Mol Biol Report. 2015;33(3):474–479. DOI: https://doi.org/10.1007/s11105-014-0763-8 EDN: VVYSAQ
- Weiland JJ, Yu MH. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugar beet. Crop Sci. 2003;43(5):1814–1818. DOI: https://doi.org/10.2135/cropsci2003.1814
- Bakooie M, Pourjam E, Mahmoudi SB, Safaie N, Naderpour M. Development of an SNP marker for sugar beet resistance/susceptible genotyping to root-knot nematode. J Agr Sci Tech. 2015; 17: 443–454
Supplementary files
