ГЕНЕТИЧЕСКИЙ КОНТРОЛЬ И МОЛЕКУЛЯРНЫЕ МАРКЕРЫ УСТОЙЧИВОСТИ САХАРНОЙ СВЕКЛЫ К ПАТОГЕНАМ



Цитировать

Полный текст

Аннотация

Сахарная свекла является единственной культурой, которая используется для промышленного производства сахара в странах с умеренным климатам. Создание сортов, устойчивых к вирусным, бактериальным, грибным инфекциям и нематодам позволяет сохранять урожайность и качество корнеплодов. Современная селекция базируется на знании генетики целевых признаков и использовании методов их молекулярного маркирования. Такой подход в несколько раз ускоряет селекционные работы за счет возможности быстрой оценки исходного материала и гибридного потомства. В обзоре приведена современная информация о генетическом контроле устойчивости к ризомании, корневой гнили, ризоктониозу, фузариозу, нематодам, мучнистой росе, церкоспорозу, бактериальной пятнистости листьев и о молекулярных маркерах, связанных с устойчивостью к патогенам. Приводятся данные о полногеномном исследовании ассоциаций для идентификации однонуклеотидных замен в генах, связанных с устойчивостью. Описано взаимодействие генов, расположенных в разных хромосомах сахарной свеклы, приводящее к усилению защитного ответа при ризомании. Представленная информация о генетике устойчивости к заболеваням и о молекулярных маркерах важна для селекции сахарной свеклы.

Полный текст

Доступ закрыт

Об авторах

Ольга Григорьевна Смирнова

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук

Email: planta@bionet.nsc.ru
ORCID iD: 0000-0002-3023-767X
SPIN-код: 1728-0676

кандидат биологических наук, старший научный сотрудник лаборатории генной инженерии

Россия, 630090, Новосибирск, Россия, пр. ак. Лаврентьева,10

Мухаммадали Бахтиёр угли Хакимов

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет

Email: ali941220@gmail.com
ORCID iD: 0000-0002-0336-8324

аспирант

Россия, 630090, Новосибирск, Россия, пр. ак. Лаврентьева,10; 630090, Новосибирск, ул. Пирогова, 1

Елена Артемовна Салина

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: salina@bionet.nsc.ru
ORCID iD: 0000-0001-8590-847X
SPIN-код: 5782-4546

доктор биол. наук, профессор, член-корр. РАН, главный научный сотрудник лаборатории молекулярной генетики и цитогенетики растений

Россия, 630090, Новосибирск, Россия, пр. ак. Лаврентьева,10

Список литературы

  1. Tayyab M, Wakeel A, Mubarak MU, Artyszak A, Ali S, Hakki EE, Mahmood K, Song B., Ishfaq M. Sugar beet cultivation in the tropics and subtropics: Challenges and opportunities. Agronomy. 2023;13(5):1213. DOI: https://doi.org/10.3390/agronomy13051213 EDN: VDZERR
  2. Panella L, Lewellen RT. Broadening the genetic base of sugar beet: Introgression from wild relatives. Euphytica. 2007;154(3):383–400. DOI: https://doi.org/10.1007/s10681-006-9209-1 EDN: YAFXMZ
  3. Tehseen MM, Poore RC, Fugate KK, Bolton MD, Ramachandran V, Wyatt NA, Li X, Chu C. Potential of publicly available Beta vulgaris germplasm for sustainable sugar beet improvement indicated by combining analysis of genetic diversity and historic resistance evaluation. Crop Sci. 2023;63(4):2255–2273. DOI: https://doi.org/10.1002/csc2.20978
  4. McGrath JM, Funk A, Galewski P, Ou S, Townsend B, Davenport K, Daligault H, Johnson S, Lee J, Hastie A, Darracq A, Willems G, Barnes S, Liachko I, Sullivan S, Koren S, Phillippy A, Wang J, Liu T, Pulman J, Childs K, Shu S, Yocum A, Fermin D, Mutasa-Göttgens E, Stevanato P, Taguchi K, Naegele R, Dorn KM. A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.). DNA Res. 2023;30(1):dsac033. DOI: https://doi.org/10.1093/dnares/dsac033
  5. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2014;505(7484):546–549. DOI: https://doi.org/10.1038/nature12817
  6. Wigg KS, Brainard SH, Metz N, Dorn KM, Goldman IL. Novel QTL associated with Rhizoctonia solani Kühn resistance identified in two table beet × sugar beet F2:3 populations using a new table beet reference genome. Crop Sci. 2023;63(2):535–555. DOI: https://doi.org/10.1002/csc2.20865
  7. Khlestkina EK. Molecular markers in genetic studies and breeding. Vavilov J Genet Breed. 2013, 17(4/2):1044–1054 (in Russ). EDN: RVGWOT
  8. Fedulova TP, Hussein AS, Nalbandyan AA. Perspective strategy of using molecular markers in breeding of Beta vulgaris L. (review). Agrarian Bulletin of the Urals. 2023;02(231):71‒82 (in Russ). DOI: https://doi.org/10.32417/1997-4868-2023-231-02-71-82 EDN: RCNSSM
  9. Fedulova TP, Nalbandyan AA. Molekulyarnoe markirovanie v selektsii sakharnoi svekly. Sahar. 2023; 3:24–27 (in Russ). DOI: https://doi.org/10.24412/2413-5518-2023-3-24-27
  10. De Biaggi M, Stevanato P, Trebbi D, Saccomani M, Biancardi E. Sugar beet resistance to rhizomania: State of the art and perspectives. Sugar Tech. 2010;12(3-4):238–242. DOI: https://doi.org/10.1007/s12355-010-0047-z EDN: YDELQB
  11. Scholten OE, De Bock TS, Klein-Lankhorst RM, Lange W. Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet. 1999;99(3-4):740–746. DOI: https://doi.org/10.1007/s001220051292 EDN: AVWFRT
  12. Norouzi P, Sabzehzari M, Zeinali H. Efficiency of some molecular markers linked to rhizomania resistance gene (Rz1) for marker assisted selection in sugar beet. J Crop Sci Biotech. 2015;18(5):319–323. DOI: https://doi.org/10.1007/s12892-015-0033-9
  13. Gidner S, Lennefors B-L, Nilsson N-O, Bensefelt J, Johansson E, Gyllenspetz U, Kraft T. QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome. 2005;48(2):279–285. DOI: https://doi.org/10.1139/g04-108
  14. Grimmer MK, Trybush S, Hanley S, Francis SA, Karp A, Asher MJC. An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theor Appl Genet. 2007;114(7):1151–1160. DOI: https://doi.org/10.1007/s00122-007-0507-3 EDN: QORTVL
  15. Grimmer MK, Kraft T, Francis SA, Asher MJC. QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breeding. 2008;127(6):650–652. DOI: https://doi.org/10.1111/j.1439-0523.2008.01539.x
  16. Paul HB, Henken B, Scholten OE, Lange W. Use of zoospores of Polymyxa betae in screening beet seedlings for resistance to beet necrotic yellow vein virus. Neth J Plant Path. 1993;99(Suppl.3):151–160. DOI: https://doi.org/10.1007/bf03041405 EDN: QOLIZV
  17. Scholten OE, Jansen RC, Paul Keizer LC, De Bock TSM, Lange W. Major genes for resistance to beet necrotic yellow vein virus (BNYVV) in Beta vulgaris. Euphytica. 1996;91(3):331–339. DOI: https://doi.org/10.1007/BF00033095 EDN: AJNCOV
  18. Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm J., González I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schütze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun. 2017;8(1):15708. DOI: https://doi.org/10.1038/ncomms15708
  19. Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. Mol Plant Pathol. 2021;22(7):829–842. DOI: https://doi.org/10.1111/mpp.13066 EDN: NGEHSN
  20. McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol. 2009;10(1):129–141. DOI: https://doi.org/10.1111/j.1364-3703.2008.00514.x EDN: YAKGRR
  21. Benjes K, Varrelmann M, Liebe S. Control of rhizomania in sugar beet – A success story made possible by resistance breeding. Plant Pathology. 2024;73(9);2248–2259. DOI: https://doi.org/10.1111/ppa.14007
  22. Broccanello C, McGrath JM, Panella L, Richardson K, Funk A, Chiodi C, Biscarini F, Barone V, Baglieri A, Squartini A, Concheri G, Stevanato P. A SNP mutation affects rhizomania-virus content of sugar beets grown on resistance-breaking soils. Euphytica. 2018;214:14. DOI: https://doi.org/10.1007/s10681-017-2098-7 EDN: UXNRNU
  23. Lange TM, Heinrich F, Kopisch-Obuch F, Keunecke H, Gültas M, Schmitt AO. Improving genomic prediction of rhizomania resistance in sugar beet (Beta vulgaris L.) by implementing epistatic effects and feature selection. F1000Research. 2024;12:280. DOI: https://doi.org/10.12688/f1000research.131134.2
  24. Stevanato P, Trebbi D, Norouzi P, Broccanello C, Saccomani M. Identification of SNP markers linked to the Rz1 gene in sugar beet. Inter Sugar J. 2012,114(1366):715–718.
  25. Nalbandyan AA, Fedulova TP, Hussein AS. Molecular selection of Beta vulgaris L. breeding materials with genes of resistance to abiotic stresses. Russian Agricultural Sciences. 2019;45(2):119–123. DOI: https://doi.org/10.3103/S1068367419020174
  26. Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C. Mapping of rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breeding. 2008;127:602–611. DOI: https://doi.org/10.1111/j.1439-0523.2008.01525.x
  27. Holmquist L, Dölfors F, Fogelqvist J, Cohn J, Kraft T, Dixelius C. Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Mol Genet Genomics. 2021;296(1):155–164. DOI: https://doi.org/10.1007/s00438-020-01735-0 EDN: OWYAFB
  28. Ravi S, Hassani M, Heidari B, Deb S, Orsini E, Li J, Richards CM, Panella LW, Srinivasan S, Campagna G, Concheri G, Squartini A, Stevanato P. Development of an SNP assay for marker-assisted selection of soil-borne Rhizoctonia solani AG-2-2-IIIB resistance in sugar beet. Biology (Basel). 2022;11(1):49. DOI: https://doi.org/10.3390/biology11010049 EDN: ZYILES
  29. Janssen GJW, Nihlgard M, Kraft T. Mapping of resistance genes to powdery mildew (Erysiphe betae) in sugar beet. Int Sugar J. 2003;105:448-451
  30. Grimmer MK, Bean KM, Asher MJ. Mapping of five resistance genes to sugar-beet powdery mildew using AFLP and anchored SNP markers. Theor Appl Genet. 2007;115(1):67–75. DOI: https://doi.org/10.1007/s00122-007-0541-1 EDN: BCPAWZ
  31. Fedulova TP, Rudenko TS. Molekulyarnye variatsii gena ustoichivosti k muchnistoi rose PMR5 u genotipov sakharnoi svekly (in Russ). Sahar. 2024;3:30–33. DOI: https://doi.org/10.24412/2413-5518-2024-3-30-33, EDN: GQGRCL
  32. Taguchi K, Kubo T, Takahashi H, Abe H. Identification and precise mapping of resistant QTLs of cercospora leaf spot resistance in sugar beet (Beta vulgaris L.). G3: Genes, Genomes, Genetics. 2011;1(4):283–291. DOI: https://doi.org/10.1534/g3.111.000513
  33. Dhiman AS, Emrani N, Holtgrewe-Stukenbrock E, Varrelmann M, Jung C. Uncovering genes essential in domestication and breeding of sugar beet. bioRxiv. 2024. DOI: https://doi.org/10.1101/2024.12.02.626358
  34. Schäfer-Pregl R, Borchardt D, Barzen E, Glass C, Mechelke W, Seitzer JF, Salamini F. Localization of QTLs for tolerance to Cercospora beticola on sugar beet linkage groups. Theor Appl Genet 1999, 99, 829–836. DOI: https://doi.org/10.1007/s001220051302 EDN: AVWFVP
  35. Törjék O, Borchardt D, Mechelke W, Schulz B, Lein JC. Plant resistance gene and means for its identification. WIPO patent WO2022037967. 2022 Feb 24.
  36. Chen C, Keunecke H, Neu E, Kopisch-Obuch FJ, McDonald BA, Stapley J. Molecular epidemiology of Cercospora leaf spot on resistant and susceptible sugar beet hybrids. Plant Pathol. 2025; 74(1), 69–83. DOI: https://doi.org/10.1111/ppa.13998 EDN: MVJQQA
  37. Abd El-Fatah BES, Hashem M, Abo-Elyousr KAM, Khalil Bagy HMM, Alamri SAM. Genetic and biochemical variations among sugar beet cultivars resistant to Cercospora leaf spot. Physiol. Mol Plant Pathol. 2020;109:101455. DOI: https://doi.org/10.1016/j.pmpp.2019.101455 EDN: FMRZFG
  38. Morrison AK, Goldman IL. Chromosome 1 QTLs associated with response to bacterial leaf spot in Beta vulgaris. Crop Sci. 2025;65(1):e21448. DOI: https://doi.org/10.1002/csc2.21448 EDN: JBJVEE
  39. Rossi V. Exploring resistance to Aphanomyces cochlioides in sugar beet. Acta Universitatis Agriculturae Sueciae. 2023; 2023:45. DOI: https://doi.org/10.54612/a.1u3lpfp6df
  40. Taguchi K, Okazaki K, Takahashi H, Kubo T, Mikami T. Molecular mapping of a gene conferring resistance to Aphanomyces root rot (black root) in sugar beet (Beta vulgaris L.). Euphytica. 2010;173(3):409–418. DOI: https://doi.org/10.1007/s10681-010-0153-8
  41. De Lucchi C, Stevanato P, Hanson L, McGrath M, Panella L, De Biaggi M, Broccanello C, Bertaggia M, Sella L, Concheri G. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet. Euphytica. 2017;213(3):71. DOI: https://doi.org/10.1007/s10681-017-1859-7
  42. Yerzhebayeva R, Abekova A, Konysbekov K, Bastaubayeva S, Kabdrakhmanova A, Absattarova A, Shavrukov Y. Two sugar beet chitinase genes, BvSP2 and BvSE2, analysed with SNP Amplifluor-like markers, are highly expressed after Fusarium root rot inoculations and field susceptibility trial. PeerJ. 2018;6:e5127. DOI: https://doi.org/10.7717/peerj.5127 EDN: PVKPJX
  43. Nalbandyan AA, Hussein AS, Fedulova TP, Rudenko TS, Mikheeva NR, Selivanova GA. Studying of the acid chitinase SE2 gene in sugar beet genotypes. Agrarian science. 2021;(4):88–90 (in Russ). DOI: https://doi.org/10.32634/0869-8155-2021-348-4-88-90 EDN: VTKXUJ
  44. Richardson KL. Registration of sugar beet mapping populations CN239, CN240, and CN241 segregating for resistance to Heterodera schachtii from sea beet. J Plant Regist. 2022;16(2):459–464. DOI: https://doi.org/10.1002/plr2.20152 EDN: APDNNE
  45. Vandenbossche BAB, Niere B, Vidal S. Effect of temperature on the hatch of two german populations of the beet cyst nematodes, Heterodera schachtii and Heterodera betae. J Plant Diseases Protection. 2015;122(5):250–254. DOI: https://doi.org/https://doi.org/10.1007/BF03356560 EDN: VTJHZI
  46. Kleine M, Voss H, Cai D, Jung C. Evaluation of nematode-resistant sugar beet (Beta vulgaris L.) lines by molecular analysis. Theor Appl Genet. 1998;97(5):896–904. DOI: https://doi.org/10.1007/s001220050970
  47. Tang G, Zhong X, Hong W, Li J, Shu Y, Liu L. Generation and identification of the number of copies of exogenous genes and the T-DNA insertion site in SCN-resistance transformation event ZHs1-2. Int J Mol Sci. 2022;23(12):6849. DOI: https://doi.org/10.3390/ijms23126849 EDN: QFHXFE
  48. Stevanato P, Trebbi D, Panella L, Richardson K, Broccanello C, Pakish L, Fenwick AL, Saccomani M. Identification and validation of a SNP marker linked to the gene HsBvm-1 for nematode resistance in sugar beet. Plant Mol Biol Report. 2015;33(3):474–479. DOI: https://doi.org/10.1007/s11105-014-0763-8 EDN: VVYSAQ
  49. Weiland JJ, Yu MH. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugar beet. Crop Sci. 2003;43(5):1814–1818. DOI: https://doi.org/10.2135/cropsci2003.1814
  50. Bakooie M, Pourjam E, Mahmoudi SB, Safaie N, Naderpour M. Development of an SNP marker for sugar beet resistance/susceptible genotyping to root-knot nematode. J Agr Sci Tech. 2015; 17: 443–454

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.