Search for traces of selection for meat productivity in Cornish chicken



Cite item

Full Text

Abstract

BACKGROUND: One of the approaches to identify the “traces” of selection is the search for extended homozygous (ROH) and heterozygous enriched (HRR) regions in the genome of animals. ROH islands are thought to be the result of directional selection, while HRR islands are thought to be the result of balanced selection.AIM: The aim of this study was a genome-wide SNP analysis of the genotype of cross-selected Cornish chicken to identify ROH and HRR islands in the chromosomes of Cornish chicken and annotate the genes within them. MATERIALS AND METHODS: For the purposes of this study, biological materials of Cornish HABBARD cross was obtained from biobank of RRIFAGB institute. The chickens were genotyped with the 60K SNP array.

RESULTS: The HRR segments were an order of magnitude shorter than the ROH segments. Data indicate the removal of monomorphic SNPs from the chicken genome whereas SNPs with minor allele frequency MAF < 0.01 were removed. The localization of the ROH islands was completely altered by the removal of SNPs with a MAF < 0.01, whereas the localization of the HRR islands was only partially altered. Genes in the ROH islands are responsible for the weight of the chickens and their feed consumption while retaining SNPs with a MAF < 0.01. Removal of SNPs with a MAF < 0.01 identified ROH islands containing genes associated with the regulation of intramuscular fat content and number of eggs laid. TheHRRislandsfoundcontaingenesresponsibleforchickenbodyweight,feedintake, andembryonicdevelopment.

CONCLUSIONS: Genes located in ROH islands are responsible for the consumer traits of the Cornish meat breed bred by directional selection, while genes located in HRR islands are most likely not the target of balanced selection.

Key words: single nucleotide polymorphism; runs of homozygosity; heterozygosity rich regions; chickens

Full Text

Restricted Access

About the authors

Natalia V. Dementieva

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Author for correspondence.
Email: dementevan@mail.ru
ORCID iD: 0000-0003-0210-9344
SPIN-code: 8768-8906
Scopus Author ID: 57189759592

Cand. Sci. (Biol.), leading research associate

Russian Federation, St. Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

Michael G. Smaragdov

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: mik7252@yandex.ru
ORCID iD: 0000-0002-5087-6444
Scopus Author ID: 6505918771

Кандидат биологических наук, специалист лаборатории молекулярной генетики

Russian Federation, St. Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

Yuri S. Shcherbakov

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: yura.10.08.94.94@mail.ru
ORCID iD: 0000-0001-6434-6287
SPIN-code: 3547-1009
Scopus Author ID: 57221619264

Candidate of Biological Sciences, Junior Researcher

Russian Federation, St. Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

References

  1. Egorova AV, Efimov DN, Emanuylova ZhV. The method for the selection of males of broiler parental flock. Poultry. 2019;7-8:8-12 (In Russian)]
  2. Ceballos F, Joshi P, Clark D, et al. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 2018;19:220–234. doi.org/10.1038/nrg.2017.109
  3. Curtis D, Vine AE, Knight J. Study of regions of extended homozygosity provides a powerful method to explore haplotype structure of human populations. Ann. Hum. Genet. 2008;72(2):261-278. doi: 10.1111/j.1469-1809.2007.00411.x
  4. Chessari G, Criscione A, Marletta D, et al. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Sci. Rep. 2024;14(1):3. doi: 10.1038/s41598-023-49125-x
  5. Fijarczyk A, Babik W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 2015;24:3529–3545. doi: 10.1111/mec.13226
  6. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81(3):559–575. doi: org/10.1086/519795
  7. Biscarini F, Cozzi P, Gaspa G, et al. detectRUNS: an R package to detect runs of homozygosity and heterozygosity in diploid genomes. CRAN (The Compr. R Arch. Network, 2019-10-24). Available from https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html
  8. Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilov J. Genet. Breed. 2023;27(5):471-479. doi: 10.18699/vjgb-23-57
  9. Psifidi A, Banos G, Matika O, et al. Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet. Sel. Evol. 2016;48(1):74. doi.org/10.1186/s12711-016-0252-7
  10. Tall GG. Ric-8 regulation of heterotrimeric G proteins. Journal of Receptors and Signal Transduction. 2013;33(3):.139–143. doi.org/10.3109/10799893.2013.763828
  11. Machado CF, Nagai MH, Lyra CS, et al. Conditional Deletion of Ric-8b in Olfactory Sensory Neurons Leads to Olfactory Impairment. J. Neurosci. 2017;50:12202-12213. doi: 10.1523/JNEUROSCI.0943-17.2017
  12. Choi W, Choe MS, Kim S, et al. RFX4 is an intrinsic factor for neuronal differentiation through induction of proneural genes POU3F2 and NEUROD1. Cell. Mol. Life Sci. 2024;81:99. doi.org/10.1007/s00018-024-05129-y
  13. Wu Z, Derks MFL, Dibbits B, et al. A Novel Loss-of-Function Variant in Transmembrane Protein 263 (TMEM263) of Autosomal Dwarfism in Chicken. Front. Genet. 2018;9:193. doi.org/10.3389/fgene.2018.00193
  14. Yang L, Du X, Wei S, et al. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Anim. Genet. 2017;48(5):P. 611–614. doi.org/10.1111/age.12573
  15. Courtland JL, Bradshaw TWA, Waitt G, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. eLife. 2021;10:e61590. doi.org/10.7554/eLife.61590
  16. Nemoto T, Tagashira H, Kita T, et al. Functional characteristics and therapeutic potential of SLC41 transporters. J. Pharmacol. Sci. 2023;151(2):88–92. doi.org/10.1016/j.jphs.2022.12.003
  17. Dadousis C, Somavilla A, Ilska JJ, et al. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet. Sel. Evol. 2021;53:70. doi.org/10.1186/s12711-021-00663-w
  18. Moreira GCM, Poleti MD, Pértille F, et al. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet. 2019;20:83. doi.org/10.1186/s12863-019-0783-3
  19. Lin S, Luo W, Jiang M, et al. Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration. Oncotarget. 2017;8(48):84039–84053. doi.org/10.18632/oncotarget.21091
  20. Barreto Sánchez AL, Wang Q, Thiam M, et al. Liver Transcriptome Response to Heat Stress in Beijing You Chickens and Guang Ming Broilers. Genes. 2022;13(3):416. doi.org/10.3390/genes13030416
  21. Gopalan L, Sebastian A, Praul CA, et al. Metformin Affects the Transcriptomic Profile of Chicken Ovarian Cancer Cells. Genes. 2021;13(1):30. doi.org/10.3390/genes13010030
  22. Bian LH, Wang SZ, Wang QG, et al. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. J. Anim. Breed. Genet. 2008;125(4):265–270. doi.org/10.1111/j.1439-0388.2008.00739.x
  23. Ogunpaimo OJ, Ojoawo HT, Wheto MY, et al. Association of insulin-like growth factor 1 (IGF1) gene polymorphism with the reproductive performance of three dual-purpose chicken breeds. Translational Anim. Sci. 2021;5(4):txab215. doi.org/10.1093/tas/txab215
  24. Fujita S, Honda K, Yamaguchi M, et al. Role of Insulin-like Growth Factor-1 in the Central Regulation of Feeding Behavior in Chicks. J. Poultry Sci. 2019;56(4):270–276. doi.org/10.2141/jpsa.0180127
  25. Piórkowska K, Żukowski K, Połtowicz K, et al. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics. 2020;21:509. doi.org/10.1186/s12864-020-06884-5
  26. Sun J, Tan X, Yang X, et al. Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes. 2022;13(2):307. doi.org/10.3390/genes13020307
  27. Abdalla EAE, Makanjuola BO, Wood BJ, et al. Genome-wide association study reveals candidate genes relevant to body weight in female turkeys (Meleagris gallopavo). PloS One. 2022;17(3):e0264838. doi.org/10.1371/journal.pone.0264838
  28. Li D, Pan Z, Zhang K, et al. Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes. 2020;11(3): 244. doi.org/10.3390/genes11030244
  29. Marchesi JAP, Ono RK, Cantão ME, et al. Exploring the genetic architecture of feed efficiency traits in chickens. Scient. Rep. 2021;11(1):4622. doi.org/10.1038/s41598-021-84125-9
  30. Liao R, Zhang X, Chen Q, et al. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim. Genet. 2016;47(5):588–596. doi.org/10.1111/age.12456
  31. Ghafouri F, Sadeghi M, Bahrami A, et al. Identification of genes affecting the amount of abdominal fat in broiler chickens ‎using microarray and RNA sequencing data. Iranian J. Anim. Sci. 2020;50(4):259-269. doi: 10.22059/ijas.2019.281245.653703
  32. Fu W, Lee WR, Abasht B. Detection of genomic signatures of recent selection in commercial broiler chickens. BMC Genet. 2016;17:122. doi.org/10.1186/s12863-016-0430-1
  33. Niu X, Tyasi TL, Qin N, et al. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. The J. Vet. Med. Sci. 2017;79(5):927–934. doi.org/10.1292/jvms.17-0014
  34. Liu Y, Katoh H, Sekizuka T, et al. SNARE protein USE1 is involved in the glycosylation and the expression of mumps virus fusion protein and important for viral propagation. PLoS Pathogens. 2022;18(12):e1010949. doi.org/10.1371/journal.ppat.1010949
  35. Sakai H, Sawada Y, Tokunaga N, et al. Uhrf1 governs the proliferation and differentiation of muscle satellite cells. iScience. 2022;25(3):103928. doi.org/10.1016/j.isci.2022.103928
  36. Evseev D, Magor KE. Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet. Sci. 2019;6(1):5. doi.org/10.3390/vetsci6010005
  37. Dong R, Li X, Lai KO. Activity and Function of the PRMT8 Protein Arginine Methyltransferase in Neurons. Life (Basel, Switzerland). 2021;11(11):1132. doi.org/10.3390/life11111132
  38. Alvarez-Rodriguez M, Ntzouni M, Wright D, et al. Chicken seminal fluid lacks CD9- and CD44-bearing extracellular vesicles. Reprod. Domestic Anim = Zuchthygiene. 2020;55(3):293–300. doi.org/10.1111/rda.13617
  39. Abdelmanova AS, Dotsev AV, Romanov MN, et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology. 2021;10(9):876. doi.org/10.3390/biology10090876
  40. Zhao X, Nie C, Zhang J, et al. Identification of candidate genomic regions for chicken egg number traits based on genome-wide association study. BMC Genomics. 2021;22(1):610. doi.org/10.1186/s12864-021-07755-3
  41. Huang S, He Y, Ye S, et al. Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array. J. Appl Genet. 2018;59(3):335–344. doi.org/10.1007/s13353-018-0448-3
  42. Yu P, Song S, Zhang X, et al. Downregulation of apoptotic repressor AVEN exacerbates cardiac injury after myocardial infarction. Proc. Natl. Acad. Sci. U S A. 2023;20(42):e2302482120. doi: 10.1073/pnas.2302482120
  43. Wu P, Zhou K, Zhang J, et al. Transcriptome Integration Analysis at Different Embryonic Ages Reveals Key lncRNAs and mRNAs for Chicken Skeletal Muscle. Front. Vet. Sci. 2022;9:908255. doi.org/10.3389/fvets.2022.9082552
  44. Li GS, Liu WW, Zhang F, et al. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics. 2020;112(6):5021-5028. doi.org/10.1016/j.ygeno.2020.09.023
  45. Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiol.. Reprod. Sci. 2021;28:2725–2734. doi.org/10.1007/s43032-021-00595-2
  46. Bai FR, Wu QQ, Wu YJ, et al. Germline FOXJ2 overexpression causes male infertility via aberrant autophagy activation by LAMP2A upregulation. Cell death & disease. 2022;13(7):665. doi.org/10.1038/s41419-022-05116-w
  47. Huang X, Otecko NO, Peng M, et al. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genomics. 2020;21:316. doi.org/10.1186/s12864-020-6736-4
  48. Nihashi Y, Umezawa K, Shinji S, et al. Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Sci. Rep. 2019;9:16527. doi.org/10.1038/s41598-019-52946-4
  49. Chai Y, Liu Z, Fu S, et al. Effects of exogenous melatonin on expressional differences of immune-related genes in cashmere goats. Front Genet. 2022;13:967402. Published 2022 Oct 24. doi: 10.3389/fgene.2022.967402
  50. Ghafouri F, Sadeghi M, Bahrami A, et al. Identification of genes affecting the amount of abdominal fat in broiler chickens ‎using microarray and RNA sequencing data. Iranian J. Anim. Sci. 2020;50(4):259-269. doi: 10.22059/ijas.2019.281245.653703
  51. Romanov MN, Shakhin AV, Abdelmanova AS., et al. Dissecting Selective Signatures and Candidate Genes in Grandparent Lines Subject to High Selection Pressure for Broiler Production and in a Local Russian Chicken Breed of Ushanka. Genes. 2024;15(4):524. doi.org/10.3390/genes15040524
  52. Fedorova ES, Dementieva NV, Shcherbakov YS, et al. Identification of Key Candidate Genes in Runs of Homozygosity of the Genome of Two Chicken Breeds, Associated with Cold Adaptation. Biology (Basel). 2022;11(4):547. doi: 10.3390/biology11040547
  53. Romanov MN, Abdelmanova AS, Fisinin VI, Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J. Anim. Sci. Biotechnol. 2023;24;14(1):35. doi: 10.1186/s40104-022-00813-0.
  54. Gao C, Wang K, Hu X, et al. Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources. Poult. Sci. 2023;102(11):103030. doi: 10.1016/j.psj.2023.103030

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.