Microbiological Diversity, Formation, Ecological Roleand Research Methods of the Pig Gut Microbiota: Review
- Authors: Sedova D.A.1,2, Golovin S.N.1, Shebeko S.K.1, Ermakov A.M.1
-
Affiliations:
- Don State Technical University
- Southern Federal University
- Issue: Vol 23, No 2 (2025)
- Pages: 173-184
- Section: Ecosystems metagenomics
- Submitted: 20.11.2024
- Accepted: 16.04.2025
- Published: 27.06.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/642085
- DOI: https://doi.org/10.17816/ecogen642085
- EDN: https://elibrary.ru/LGMKYE
- ID: 642085
Cite item
Abstract
This review presents data on studies of the intestinal microbiota of pigs, which plays a key role in the maintenance of animal health and physiology. The review summarizes to describe the effects of age, diet and antibiotics on the composition and functional activity of the intestinal microbiota of pigs and the distribution of antibiotic resistance genes under livestock production conditions. This review summarises research data on the composition of the intestinal microbiota of pigs, with special attention paid to the formation and dynamics of the composition of the microbiota of piglets in the neonatal period. The influence of different types of diet on the composition and functional activity of the intestinal microbiota of pigs, including the expression of glycosidohydrolase and glycosyltransferase genes and the possibility of modulating the composition of the microbiota through diet, which can minimise the effects of stress at weaning and increase animal performance. Particular attention is given to the role of the gut microbiota in the metabolism of amino acids, vitamins, lipids and bile acids, and to the functional metagenomics of the microbial community, allowing the identification of genes associated with adaptation to different diet types and pathological conditions. The review also discusses the role of pigs in the spread of antibiotic resistance genes, including using metagenomic and metatranscriptomic profiling, as well as the risks associated with their introduction into the environment and the potential impact on animal and human health.
Full Text

About the authors
Darya A. Sedova
Don State Technical University; Southern Federal University
Author for correspondence.
Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN-code: 6197-7220
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000; Rostov-on-Don
Sergei N. Golovin
Don State Technical University
Email: labbiobez@yandex.ru
ORCID iD: 0000-0002-1929-6345
SPIN-code: 5345-4005
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000
Sergei K. Shebeko
Don State Technical University
Email: shebeko_sk@mail.ru
ORCID iD: 0000-0001-9350-7588
SPIN-code: 7913-5266
Cand. Sci. (Pharmacology)
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000Alexey M. Ermakov
Don State Technical University
Email: amermakov@ya.ru
ORCID iD: 0000-0002-9834-3989
SPIN-code: 5358-3424
Cand. Sci. (Pharmacology)
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000References
- Wang C, Li P, Yan Q, et al. Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China. mSystems. 2019;4(6):e00206–19. doi: 10.1128/msystems.00206-19
- Yang J, Chen R, Peng Y, et al. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol. 2023;14:1284603.doi: 10.3389/fmicb.2023.1284603
- Rowan JP, Durrance KL, Combs GE, Fisher LZ. The digestive tract of the pig. Gainesville: Animal Science Department; Florida Cooperative Extension Service; Institute of Food and Agricultural Sciences; University of Florida; 1997.
- Thomson JR, Friendship RM. Digestive system. In: Zimmerman JJ, Karriker LA, Ramirez A, et al editors. Diseases of swine. 11th ed. USA:John Wiley and Sons; 2019. P. 234–263.
- Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Health Res Rev. 2012;13(1):100–109. doi: 10.1017/S1466252312000084
- Holman DB, Kommadath A, Tingley JP, et al. Novel insights into the pig gut microbiome using metagenome-assembled genomes. Microbiol Spectr. 2022;10(4):e02380–22. doi: 10.1128/spectrum.02380-22
- Kennedy NA, Walker AW, Berry SH, et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PloS one. 2014;9(2): e88982. doi: 10.1371/journal.pone.0088982
- Chen C, Zhou Y, Fu H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12(1):1106. doi: 10.1038/s41467-021-21295-0
- Fernandez M, Thompson J, Calle A. Novel feed additive delivers antimicrobial copper and influences fecal microbiota in pigs. Microbiol Spectr. 2024;12(6):e04280–23. doi: 10.1128/spectrum.04280-23
- Chen X, Xu J, Ren E, et al. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe. 2018;49:30–40. doi: 10.1016/j.anaerobe.2017.12.002
- Quan J, Xu C, Ruan D, et al. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol. 2023;14(1):143. doi: 10.1186/s40104-023-00943-z
- Bian G, Ma S, Zhu Z, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–1577. doi: 10.1111/1462-2920.13272
- Konstantinov SR, Awati AA, Williams BA, et al. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 2006;8(7):1191–1199. doi: 10.1111/j.1462-2920.2006.01009.x
- Choudhury R, Middelkoop A, de Souza JG, et al. Impact of early-life feeding on local intestinal microbiota and digestive system development in piglets. Sci Rep. 2021;11(1):4213. doi: 10.1038/s41598-021-83756-2
- Fulde M, Sommer F, Chassaing B, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature. 2018;560(7719):489–493. doi: 10.1038/s41586-018-0395-5
- Kurkjian HM, Akbari MJ, Momeni B. The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Computat Biol. 2021;17(1):e1008643. doi: 10.1371/journal.pcbi.1008643
- Newberry RC, Wood-Gush DGM. The suckling behaviour of domestic pigs in a semi-natural environment. Behaviour. 1985;95:11–25. doi: 10.1163/156853985X00028
- Knecht D, Cholewińska P, Jankowska-Mąkosa A, Czyż K. Development of swine’s digestive tract microbiota and its relation to production indices — A review. Animals (Basel). 2020;10(3):527. doi: 10.3390/ani10030527
- Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica. 2017;59(1):31. doi: 10.1186/s13028-017-0299-7
- Varel VH, Yen JT. Microbial perspective on fiber utilization by swine.J Anim Sci. 1997;75(10):2715–2722. doi: 10.2527/1997.75102715x
- Xiong X, Tan B, Song M, et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci. 2019;6:46. doi: 10.3389/fvets.2019.00046
- Kuller WI, Soede NM, van Beers-Schreurs HMG, et al. Effects of intermittent suckling and creep feed intake on pig performance from birth to slaughter. J Anim Sci. 2007;85(5):1295–1301. doi: 10.2527/jas.2006-177
- Xiao L, Estellé J, Kiilerich P, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1(12):16161.doi: 10.1038/nmicrobiol.2016.161
- Chen C, Huang X, Fang S, et al. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs.Front Microbiol. 2018;9:2626. doi: 10.3389/fmicb.2018.02626
- Rahman R, Fouhse JM, Ju T, et al. A comparison of wild boar and domestic pig microbiota does not reveal a loss of microbial species but an increase in alpha diversity and opportunistic genera in domestic pigs. Microbiol Spectr. 2024;12(10):e00843–24. doi: 10.1128/spectrum.00843-24
- Quan J, Cai G, Ye J, et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci Rep. 2018;8(1):4536.doi: 10.1038/s41598-018-22692-0
- Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, et al. Changes in the microbiome profile in different parts of the intestine in piglets with diarrhea. Animals. 2022;12(3):320. doi: 10.3390/ani12030320
- Korchagina AYu, Bryndina LV. Determination of species diversity of pig intestinal microbiome in order to create a consortium of microorganisms for wastewater treatment from organic contaminants. In: Koschaev AG, Stepanova AV, editors. Proceedings of the All-Russian conferences with international participation: “Health-saving technologies, quality and safety of food products”; 19 Nov 2021; Krasnodar. Krasnodar: Trubilin; 2021. P. 179–184. EDN: YLPQSS (In Russ.)
- Gryaznova M, Smirnova Y, Burakova I, et al. Characteristics of the fecal microbiome of piglets with diarrhea identified using shotgun metagenomics sequencing. Animals. 2023;13(14):2303. doi: 10.3390/ani13142303
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Study of the diversity of fungal microorganisms in the gut of swine with different feed conversion rate. Scientific notes of the Educational Institution Vitebsk State Academy of Veterinary Medicine of the Order of the Badge of Honor. 2023;59(4):85–89. doi: 10.52368/2078-0109-2023-59-4-85-89EDN: DRZGGK
- Lysenko YuA, Koshaev AG, Belyak VA, et al. Analysis, isolation and identification of the microbiome from the ceca of the intestines of industrial pigs. Izvestiya of Timiryazev Agricultural Academy. 2024;(4):168–183. doi: 10.26897/0021-342X-2024-4-168-183 EDN: IFSUKJ
- Dumont MG, Pommerenke B, Casper P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep. 2013;5(5):757–764.doi: 10.1111/1758-2229.12078
- Xu J, Xu R, Jia M, et al. Metatranscriptomic analysis of colonic microbiota’s functional response to different dietary fibers in growing pigs. Anim Microbiome. 2021;3(1):45. doi: 10.1186/s42523-021-00108-1
- Gosalbes MJ, Durbán A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PloS one. 2011;6(3):e17447. doi: 10.1371/journal.pone.0017447
- Shan T, Li L, Simmonds P, et al. The fecal virome of pigs on a high-density farm. J Virol. 2011;85(22):11697–11708. doi: 10.1128/JVI.05217-11
- Urubschurov V, Janczyk P, Souffrant W-B, et al. Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions. FEMS Microbiol Ecol. 2011;77(3):493–502. doi: 10.1111/j.1574-6941.2011.01129.x
- Chen Q, Lyu W, Pan C, et al. Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs. Sci Total Environ. 2024;927:172078. doi: 10.1016/j.scitotenv.2024.172078
- Meene A, Gierse L, Schwaiger T, et al. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol. 2023;14:1250140. doi: 10.3389/fmicb.2023.1250140
- Crespo-Piazuelo D, Estellé J, Revilla M, et al. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 2018;8(1):12727.doi: 10.1038/s41598-018-30932-6
- Lamendella R, Santo Domingo JW, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 2011;11:103. doi: 10.1186/1471-2180-11-103
- Velayudhan DE, Kim IH, Nyachoti CM. Characterization of dietary energy in swine feed and feed ingredients: a review of recent research results.Asian-Australas J Anim Sci. 2015;28(1):1–13. doi: 10.1186/1471-2180-11-103
- Tiwari UP, Singh AK, Jha R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Anim Nutr. 2019;5(3):217–226.doi: 10.1016/j.aninu.2019.04.003
- Li H, Han L, Zhou F, et al. Ningxiang pig-derived microbiota affects the growth performance, gut microbiota, and serum metabolome of nursery pigs. Animals. 2024;14(17):2450. doi: 10.3390/ani14172450
- Pandey S, Kim ES, Cho JH, et al. Swine gut microbiome associated with non-digestible carbohydrate utilization. Front Vet Sci. 2023;10:1231072. doi: 10.3389/fvets.2023.1231072
- Tang X, Zhang L, Wang L, et al. Multi-omics analysis reveals dietary fiber’s impact on growth, slaughter performance, and gut microbiome in Durco × Bamei crossbred pig. Microorganisms. 2024;12(8):1674.doi: 10.3390/microorganisms12081674
- Zhang L, Yue Y, Shi M, et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem. 2020;320:126648. doi: 10.1016/j.foodchem.2020.126648
- Zhang J, Jiang Q, Du Z, et al. Knowledge graph-derived feed efficiency analysis via pig gut microbiota. Sci Rep. 2024;14(1):13939.doi: 10.1038/s41598-024-64835-6
- Pieper R, Kröger S, Richter JF, et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J Nutr. 2012;142(4):661–667.doi: 10.3945/jn.111.156190
- Liu G, Gu K, Liu X, et al. Dietary glutamate enhances intestinal immunity by modulating microbiota and Th17/Treg balance-related immune signaling in piglets after lipopolysaccharide challenge. Food Res Int. 2023;166:112597. doi: 10.1016/j.foodres.2023.112597
- Yang Q, Huang X, Zhao S, et al. Structure and function of the fecal microbiota in diarrheic neonatal piglets. Front Microbiol. 2017;8:502.doi: 10.3389/fmicb.2017.00502
- Liao SF, Ji F, Fan P, Denryter K. Swine gastrointestinal microbiota and the effects of dietary amino acids on its composition and metabolism.Int J Mol Sci. 2024;25(2):1237. doi: 10.3390/ijms25021237
- Gryaznova MV, Smirnova YuD, Burakova IYu, et al. Analysis of the genes of enzymes of metabolic pathways in the intestines of the newborn piglets with diarrhea. Bulletin of veterinary pharmacology. 2023;(4):163–174. doi: 10.17238/issn2541-8203.2023.4.163 EDN: TDELWK
- Yang H, Huang X, Fang S, et al. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci Rep. 2016;6(1):27427. doi: 10.1038/srep27427
- Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: A review. J Anim Sci Biotechnol. 2013;4:35. doi: 10.1186/2049-1891-4-35
- Li J. Current status and prospects for in-feed antibiotics in the different stages of pork production — A review. Asian-Australas J Anim Sci. 2017;30(12):1667–1673. doi: 10.5713/ajas.17.0418
- Lekagul A, Tangcharoensathien V, Yeung S. Patterns of antibiotic use in global pig production: a systematic review. Vet Anim Sci. 2019;7:100058. doi: 10.1016/j.vas.2019.100058
- Munk P, Yang D, Röder T, et al. The European livestock resistome. Msystems. 2024;9(4):e01328–23. doi: 10.1128/msystems.01328-23
- Forcina G, Pérez-Pardal L, Carvalheira J, Beja-Pereira A. Gut microbiome studies in livestock: achievements, challenges, and perspectives.Animals. 2022;12(23):3375. doi: 10.3390/ani12233375
- Keum GB, Kim ES, Cho J, et al. Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. J Anim Sci Technol. 2023;65(1):175–182. doi: 10.5187/jast.2022.e103
- Wang Y, Hu Y, Liu F, et al. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ Int. 2020;138:105649.doi: 10.1016/j.envint.2020.10564
- Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5:103. doi: 10.1186/s40168-017-0324-0
- Neher TP, Soupir ML, Andersen DS, et al. Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA. Front Antibiot. 2023;2:1116785. doi: 10.3389/frabi.2023.1116785
- Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics. 2023;12(2):328.doi: 10.3390/antibiotics12020328
- Wang N, Guo X, Yan Z, et al. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China. PLoS One. 2016;11(7):e0156889.doi: 10.1371/journal.pone.0156889
- Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep. 2023;13(1):11999. doi: 10.1038/s41598-023-39204-4
- Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5(1):103. doi: 10.1186/s40168-017-0324-0
- Selvam A, Xu D, Zhao Z, Wong JW. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Biores Technol. 2012;126:383–390. doi: 10.1016/j.biortech.2012.03.045
- Scicchitano D, Leuzzi D, Babbi G, et al. Dispersion of antimicrobial resistant bacteria in pig farms and in the surrounding environment. Anim Microbiome. 2024;6(1):17. doi: 10.1186/s42523-024-00305-8
- Donnik IM, Bykova OA, Lysova YaYu, et al. Dynamics of antibiotic susceptibility of Enterococcus faecium strains at the dairy farms in the regions with various levels of agrocoenosis contamination. Veterinaria Kubani. 2019;(1):7–10. doi: 10.33861/2071-8020-2019-1-7-10 EDN: JQRSTW
- Krivonogova AS, Moiseeva KV, Lysova AV. Antibiotic susceptibility of cattle microflora in the technogenic polluted areas. Legal regulation inveterinary medicine. 2017;(3):159–161. EDN: ZHZWPP
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Abundance of bacterial antibiotic resistance genes in swine during the fattening period (Sus scrofa domesticus). Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):96–101. doi: 10.52368/2078-0109-2023-59-4-96-101 EDN: QUAKGI
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Assessment of the relative abundance of antibiotic resistance genes of bacteria in the gut of piglets (Sus scrofa domesticus) in the early neonatal period. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):89–95. doi: 10.52368/2078-0109-2023-59-4-89-95 EDN: DSAGXS
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Analysis of antibiotic resistance genes of Escherichia coli from the gut of the piglets with diarrhea. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2024;60(2):95–100. doi: 10.52368/2078-0109-2024-60-2-95-100 EDN: QAXUCK
Supplementary files
