Microbiological Diversity, Formation, Ecological Roleand Research Methods of the Pig Gut Microbiota: Review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review presents data on studies of the intestinal microbiota of pigs, which plays a key role in the maintenance of animal health and physiology. The review summarizes to describe the effects of age, diet and antibiotics on the composition and functional activity of the intestinal microbiota of pigs and the distribution of antibiotic resistance genes under livestock production conditions. This review summarises research data on the composition of the intestinal microbiota of pigs, with special attention paid to the formation and dynamics of the composition of the microbiota of piglets in the neonatal period. The influence of different types of diet on the composition and functional activity of the intestinal microbiota of pigs, including the expression of glycosidohydrolase and glycosyltransferase genes and the possibility of modulating the composition of the microbiota through diet, which can minimise the effects of stress at weaning and increase animal performance. Particular attention is given to the role of the gut microbiota in the metabolism of amino acids, vitamins, lipids and bile acids, and to the functional metagenomics of the microbial community, allowing the identification of genes associated with adaptation to different diet types and pathological conditions. The review also discusses the role of pigs in the spread of antibiotic resistance genes, including using metagenomic and metatranscriptomic profiling, as well as the risks associated with their introduction into the environment and the potential impact on animal and human health.

Full Text

Restricted Access

About the authors

Darya A. Sedova

Don State Technical University; Southern Federal University

Author for correspondence.
Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN-code: 6197-7220
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000; Rostov-on-Don

Sergei N. Golovin

Don State Technical University

Email: labbiobez@yandex.ru
ORCID iD: 0000-0002-1929-6345
SPIN-code: 5345-4005
Russian Federation, 1 Gagarina sq., Rostov on Don, 344000

Sergei K. Shebeko

Don State Technical University

Email: shebeko_sk@mail.ru
ORCID iD: 0000-0001-9350-7588
SPIN-code: 7913-5266

Cand. Sci. (Pharmacology)

Russian Federation, 1 Gagarina sq., Rostov on Don, 344000

Alexey M. Ermakov

Don State Technical University

Email: amermakov@ya.ru
ORCID iD: 0000-0002-9834-3989
SPIN-code: 5358-3424

Cand. Sci. (Pharmacology)

Russian Federation, 1 Gagarina sq., Rostov on Don, 344000

References

  1. Wang C, Li P, Yan Q, et al. Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China. mSystems. 2019;4(6):e00206–19. doi: 10.1128/msystems.00206-19
  2. Yang J, Chen R, Peng Y, et al. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol. 2023;14:1284603.doi: 10.3389/fmicb.2023.1284603
  3. Rowan JP, Durrance KL, Combs GE, Fisher LZ. The digestive tract of the pig. Gainesville: Animal Science Department; Florida Cooperative Extension Service; Institute of Food and Agricultural Sciences; University of Florida; 1997.
  4. Thomson JR, Friendship RM. Digestive system. In: Zimmerman JJ, Karriker LA, Ramirez A, et al editors. Diseases of swine. 11th ed. USA:John Wiley and Sons; 2019. P. 234–263.
  5. Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Health Res Rev. 2012;13(1):100–109. doi: 10.1017/S1466252312000084
  6. Holman DB, Kommadath A, Tingley JP, et al. Novel insights into the pig gut microbiome using metagenome-assembled genomes. Microbiol Spectr. 2022;10(4):e02380–22. doi: 10.1128/spectrum.02380-22
  7. Kennedy NA, Walker AW, Berry SH, et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PloS one. 2014;9(2): e88982. doi: 10.1371/journal.pone.0088982
  8. Chen C, Zhou Y, Fu H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12(1):1106. doi: 10.1038/s41467-021-21295-0
  9. Fernandez M, Thompson J, Calle A. Novel feed additive delivers antimicrobial copper and influences fecal microbiota in pigs. Microbiol Spectr. 2024;12(6):e04280–23. doi: 10.1128/spectrum.04280-23
  10. Chen X, Xu J, Ren E, et al. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe. 2018;49:30–40. doi: 10.1016/j.anaerobe.2017.12.002
  11. Quan J, Xu C, Ruan D, et al. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol. 2023;14(1):143. doi: 10.1186/s40104-023-00943-z
  12. Bian G, Ma S, Zhu Z, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–1577. doi: 10.1111/1462-2920.13272
  13. Konstantinov SR, Awati AA, Williams BA, et al. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 2006;8(7):1191–1199. doi: 10.1111/j.1462-2920.2006.01009.x
  14. Choudhury R, Middelkoop A, de Souza JG, et al. Impact of early-life feeding on local intestinal microbiota and digestive system development in piglets. Sci Rep. 2021;11(1):4213. doi: 10.1038/s41598-021-83756-2
  15. Fulde M, Sommer F, Chassaing B, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature. 2018;560(7719):489–493. doi: 10.1038/s41586-018-0395-5
  16. Kurkjian HM, Akbari MJ, Momeni B. The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Computat Biol. 2021;17(1):e1008643. doi: 10.1371/journal.pcbi.1008643
  17. Newberry RC, Wood-Gush DGM. The suckling behaviour of domestic pigs in a semi-natural environment. Behaviour. 1985;95:11–25. doi: 10.1163/156853985X00028
  18. Knecht D, Cholewińska P, Jankowska-Mąkosa A, Czyż K. Development of swine’s digestive tract microbiota and its relation to production indices — A review. Animals (Basel). 2020;10(3):527. doi: 10.3390/ani10030527
  19. Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica. 2017;59(1):31. doi: 10.1186/s13028-017-0299-7
  20. Varel VH, Yen JT. Microbial perspective on fiber utilization by swine.J Anim Sci. 1997;75(10):2715–2722. doi: 10.2527/1997.75102715x
  21. Xiong X, Tan B, Song M, et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci. 2019;6:46. doi: 10.3389/fvets.2019.00046
  22. Kuller WI, Soede NM, van Beers-Schreurs HMG, et al. Effects of intermittent suckling and creep feed intake on pig performance from birth to slaughter. J Anim Sci. 2007;85(5):1295–1301. doi: 10.2527/jas.2006-177
  23. Xiao L, Estellé J, Kiilerich P, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1(12):16161.doi: 10.1038/nmicrobiol.2016.161
  24. Chen C, Huang X, Fang S, et al. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs.Front Microbiol. 2018;9:2626. doi: 10.3389/fmicb.2018.02626
  25. Rahman R, Fouhse JM, Ju T, et al. A comparison of wild boar and domestic pig microbiota does not reveal a loss of microbial species but an increase in alpha diversity and opportunistic genera in domestic pigs. Microbiol Spectr. 2024;12(10):e00843–24. doi: 10.1128/spectrum.00843-24
  26. Quan J, Cai G, Ye J, et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci Rep. 2018;8(1):4536.doi: 10.1038/s41598-018-22692-0
  27. Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, et al. Changes in the microbiome profile in different parts of the intestine in piglets with diarrhea. Animals. 2022;12(3):320. doi: 10.3390/ani12030320
  28. Korchagina AYu, Bryndina LV. Determination of species diversity of pig intestinal microbiome in order to create a consortium of microorganisms for wastewater treatment from organic contaminants. In: Koschaev AG, Stepanova AV, editors. Proceedings of the All-Russian conferences with international participation: “Health-saving technologies, quality and safety of food products”; 19 Nov 2021; Krasnodar. Krasnodar: Trubilin; 2021. P. 179–184. EDN: YLPQSS (In Russ.)
  29. Gryaznova M, Smirnova Y, Burakova I, et al. Characteristics of the fecal microbiome of piglets with diarrhea identified using shotgun metagenomics sequencing. Animals. 2023;13(14):2303. doi: 10.3390/ani13142303
  30. Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Study of the diversity of fungal microorganisms in the gut of swine with different feed conversion rate. Scientific notes of the Educational Institution Vitebsk State Academy of Veterinary Medicine of the Order of the Badge of Honor. 2023;59(4):85–89. doi: 10.52368/2078-0109-2023-59-4-85-89EDN: DRZGGK
  31. Lysenko YuA, Koshaev AG, Belyak VA, et al. Analysis, isolation and identification of the microbiome from the ceca of the intestines of industrial pigs. Izvestiya of Timiryazev Agricultural Academy. 2024;(4):168–183. doi: 10.26897/0021-342X-2024-4-168-183 EDN: IFSUKJ
  32. Dumont MG, Pommerenke B, Casper P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep. 2013;5(5):757–764.doi: 10.1111/1758-2229.12078
  33. Xu J, Xu R, Jia M, et al. Metatranscriptomic analysis of colonic microbiota’s functional response to different dietary fibers in growing pigs. Anim Microbiome. 2021;3(1):45. doi: 10.1186/s42523-021-00108-1
  34. Gosalbes MJ, Durbán A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PloS one. 2011;6(3):e17447. doi: 10.1371/journal.pone.0017447
  35. Shan T, Li L, Simmonds P, et al. The fecal virome of pigs on a high-density farm. J Virol. 2011;85(22):11697–11708. doi: 10.1128/JVI.05217-11
  36. Urubschurov V, Janczyk P, Souffrant W-B, et al. Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions. FEMS Microbiol Ecol. 2011;77(3):493–502. doi: 10.1111/j.1574-6941.2011.01129.x
  37. Chen Q, Lyu W, Pan C, et al. Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs. Sci Total Environ. 2024;927:172078. doi: 10.1016/j.scitotenv.2024.172078
  38. Meene A, Gierse L, Schwaiger T, et al. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol. 2023;14:1250140. doi: 10.3389/fmicb.2023.1250140
  39. Crespo-Piazuelo D, Estellé J, Revilla M, et al. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 2018;8(1):12727.doi: 10.1038/s41598-018-30932-6
  40. Lamendella R, Santo Domingo JW, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 2011;11:103. doi: 10.1186/1471-2180-11-103
  41. Velayudhan DE, Kim IH, Nyachoti CM. Characterization of dietary energy in swine feed and feed ingredients: a review of recent research results.Asian-Australas J Anim Sci. 2015;28(1):1–13. doi: 10.1186/1471-2180-11-103
  42. Tiwari UP, Singh AK, Jha R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Anim Nutr. 2019;5(3):217–226.doi: 10.1016/j.aninu.2019.04.003
  43. Li H, Han L, Zhou F, et al. Ningxiang pig-derived microbiota affects the growth performance, gut microbiota, and serum metabolome of nursery pigs. Animals. 2024;14(17):2450. doi: 10.3390/ani14172450
  44. Pandey S, Kim ES, Cho JH, et al. Swine gut microbiome associated with non-digestible carbohydrate utilization. Front Vet Sci. 2023;10:1231072. doi: 10.3389/fvets.2023.1231072
  45. Tang X, Zhang L, Wang L, et al. Multi-omics analysis reveals dietary fiber’s impact on growth, slaughter performance, and gut microbiome in Durco × Bamei crossbred pig. Microorganisms. 2024;12(8):1674.doi: 10.3390/microorganisms12081674
  46. Zhang L, Yue Y, Shi M, et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem. 2020;320:126648. doi: 10.1016/j.foodchem.2020.126648
  47. Zhang J, Jiang Q, Du Z, et al. Knowledge graph-derived feed efficiency analysis via pig gut microbiota. Sci Rep. 2024;14(1):13939.doi: 10.1038/s41598-024-64835-6
  48. Pieper R, Kröger S, Richter JF, et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J Nutr. 2012;142(4):661–667.doi: 10.3945/jn.111.156190
  49. Liu G, Gu K, Liu X, et al. Dietary glutamate enhances intestinal immunity by modulating microbiota and Th17/Treg balance-related immune signaling in piglets after lipopolysaccharide challenge. Food Res Int. 2023;166:112597. doi: 10.1016/j.foodres.2023.112597
  50. Yang Q, Huang X, Zhao S, et al. Structure and function of the fecal microbiota in diarrheic neonatal piglets. Front Microbiol. 2017;8:502.doi: 10.3389/fmicb.2017.00502
  51. Liao SF, Ji F, Fan P, Denryter K. Swine gastrointestinal microbiota and the effects of dietary amino acids on its composition and metabolism.Int J Mol Sci. 2024;25(2):1237. doi: 10.3390/ijms25021237
  52. Gryaznova MV, Smirnova YuD, Burakova IYu, et al. Analysis of the genes of enzymes of metabolic pathways in the intestines of the newborn piglets with diarrhea. Bulletin of veterinary pharmacology. 2023;(4):163–174. doi: 10.17238/issn2541-8203.2023.4.163 EDN: TDELWK
  53. Yang H, Huang X, Fang S, et al. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci Rep. 2016;6(1):27427. doi: 10.1038/srep27427
  54. Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: A review. J Anim Sci Biotechnol. 2013;4:35. doi: 10.1186/2049-1891-4-35
  55. Li J. Current status and prospects for in-feed antibiotics in the different stages of pork production — A review. Asian-Australas J Anim Sci. 2017;30(12):1667–1673. doi: 10.5713/ajas.17.0418
  56. Lekagul A, Tangcharoensathien V, Yeung S. Patterns of antibiotic use in global pig production: a systematic review. Vet Anim Sci. 2019;7:100058. doi: 10.1016/j.vas.2019.100058
  57. Munk P, Yang D, Röder T, et al. The European livestock resistome. Msystems. 2024;9(4):e01328–23. doi: 10.1128/msystems.01328-23
  58. Forcina G, Pérez-Pardal L, Carvalheira J, Beja-Pereira A. Gut microbiome studies in livestock: achievements, challenges, and perspectives.Animals. 2022;12(23):3375. doi: 10.3390/ani12233375
  59. Keum GB, Kim ES, Cho J, et al. Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. J Anim Sci Technol. 2023;65(1):175–182. doi: 10.5187/jast.2022.e103
  60. Wang Y, Hu Y, Liu F, et al. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ Int. 2020;138:105649.doi: 10.1016/j.envint.2020.10564
  61. Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5:103. doi: 10.1186/s40168-017-0324-0
  62. Neher TP, Soupir ML, Andersen DS, et al. Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA. Front Antibiot. 2023;2:1116785. doi: 10.3389/frabi.2023.1116785
  63. Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics. 2023;12(2):328.doi: 10.3390/antibiotics12020328
  64. Wang N, Guo X, Yan Z, et al. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China. PLoS One. 2016;11(7):e0156889.doi: 10.1371/journal.pone.0156889
  65. Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep. 2023;13(1):11999. doi: 10.1038/s41598-023-39204-4
  66. Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5(1):103. doi: 10.1186/s40168-017-0324-0
  67. Selvam A, Xu D, Zhao Z, Wong JW. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Biores Technol. 2012;126:383–390. doi: 10.1016/j.biortech.2012.03.045
  68. Scicchitano D, Leuzzi D, Babbi G, et al. Dispersion of antimicrobial resistant bacteria in pig farms and in the surrounding environment. Anim Microbiome. 2024;6(1):17. doi: 10.1186/s42523-024-00305-8
  69. Donnik IM, Bykova OA, Lysova YaYu, et al. Dynamics of antibiotic susceptibility of Enterococcus faecium strains at the dairy farms in the regions with various levels of agrocoenosis contamination. Veterinaria Kubani. 2019;(1):7–10. doi: 10.33861/2071-8020-2019-1-7-10 EDN: JQRSTW
  70. Krivonogova AS, Moiseeva KV, Lysova AV. Antibiotic susceptibility of cattle microflora in the technogenic polluted areas. Legal regulation inveterinary medicine. 2017;(3):159–161. EDN: ZHZWPP
  71. Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Abundance of bacterial antibiotic resistance genes in swine during the fattening period (Sus scrofa domesticus). Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):96–101. doi: 10.52368/2078-0109-2023-59-4-96-101 EDN: QUAKGI
  72. Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Assessment of the relative abundance of antibiotic resistance genes of bacteria in the gut of piglets (Sus scrofa domesticus) in the early neonatal period. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):89–95. doi: 10.52368/2078-0109-2023-59-4-89-95 EDN: DSAGXS
  73. Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Analysis of antibiotic resistance genes of Escherichia coli from the gut of the piglets with diarrhea. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2024;60(2):95–100. doi: 10.52368/2078-0109-2024-60-2-95-100 EDN: QAXUCK

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.