Микробиологическое разнообразие, формирование, экологическая роль и методы исследования микробиоты кишечника свиней: обзор литературы
- Авторы: Седова Д.А.1,2, Головин С.Н.1, Шебеко С.К.1, Ермаков А.М.1
-
Учреждения:
- Донской государственный технический университет
- Южный федеральный университет
- Выпуск: Том 23, № 2 (2025)
- Страницы: 173-184
- Раздел: Метагеномика экосистем
- Статья получена: 20.11.2024
- Статья одобрена: 16.04.2025
- Статья опубликована: 27.06.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/642085
- DOI: https://doi.org/10.17816/ecogen642085
- EDN: https://elibrary.ru/LGMKYE
- ID: 642085
Цитировать
Полный текст



Аннотация
В работе представлены данные исследований кишечной микробиоты свиней, играющей ключевую роль в поддержании здоровья и физиологии животных. В обзоре обобщены экспериментальные данные, полученные разными группами исследователей о влиянии таких параметров, как возраст, тип диеты и использование антибиотиков, на состав и функциональную активность кишечной микробиоты свиней и их вклад в распространение генов антибиотикорезистентности в условиях животноводства. Особое внимание уделено формированию и динамике состава микробиоты поросят в неонатальном периоде. Рассмотрено влияние различных типов диеты на состав и функциональную активность кишечной микробиоты свиней, в том числе на экспрессию генов гликозидгидролаз и гликозилтрансфераз и возможности модулирования состава микробиоты посредством диеты, что может минимизировать последствия стресса при отъеме и повысить продуктивность животных. Представляет интерес роль кишечной микробиоты в метаболизме аминокислот, витаминов, липидов и желчных кислот, а также функциональной метагеномике микробного сообщества, позволяющей выявлять гены, связанные с адаптацией к различным типам рациона и патологическим состояниям. В обзоре также рассматривается роль свиней в распространении генов антибиотикорезистентности, в том числе с использованием метагеномного и метатранскриптомного профилирования, а также риски, связанные с их попаданием в окружающую среду, и потенциальное воздействие на здоровье животных и человека.
Полный текст

Об авторах
Дарья Андреевна Седова
Донской государственный технический университет; Южный федеральный университет
Автор, ответственный за переписку.
Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN-код: 6197-7220
Россия, 344000, Ростов-на-Дону, пл. Гагарина, д. 1; Ростов-на-Дону
Сергей Николаевич Головин
Донской государственный технический университет
Email: labbiobez@yandex.ru
ORCID iD: 0000-0002-1929-6345
SPIN-код: 5345-4005
Россия, 344000, Ростов-на-Дону, пл. Гагарина, д. 1
Сергей Константинович Шебеко
Донской государственный технический университет
Email: shebeko_sk@mail.ru
ORCID iD: 0000-0001-9350-7588
SPIN-код: 7913-5266
кандидат фарм. наук
Россия, 344000, Ростов-на-Дону, пл. Гагарина, д. 1Алексей Михайлович Ермаков
Донской государственный технический университет
Email: amermakov@ya.ru
ORCID iD: 0000-0002-9834-3989
SPIN-код: 5358-3424
кандидат фарм. наук
Россия, 344000, Ростов-на-Дону, пл. Гагарина, д. 1Список литературы
- Wang C, Li P, Yan Q, et al. Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China. mSystems. 2019;4(6):e00206–19. doi: 10.1128/msystems.00206-19
- Yang J, Chen R, Peng Y, et al. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol. 2023;14:1284603.doi: 10.3389/fmicb.2023.1284603
- Rowan JP, Durrance KL, Combs GE, Fisher LZ. The digestive tract of the pig. Gainesville: Animal Science Department; Florida Cooperative Extension Service; Institute of Food and Agricultural Sciences; University of Florida; 1997.
- Thomson JR, Friendship RM. Digestive system. In: Zimmerman JJ, Karriker LA, Ramirez A, et al editors. Diseases of swine. 11th ed. USA:John Wiley and Sons; 2019. P. 234–263.
- Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Health Res Rev. 2012;13(1):100–109. doi: 10.1017/S1466252312000084
- Holman DB, Kommadath A, Tingley JP, et al. Novel insights into the pig gut microbiome using metagenome-assembled genomes. Microbiol Spectr. 2022;10(4):e02380–22. doi: 10.1128/spectrum.02380-22
- Kennedy NA, Walker AW, Berry SH, et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PloS one. 2014;9(2): e88982. doi: 10.1371/journal.pone.0088982
- Chen C, Zhou Y, Fu H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12(1):1106. doi: 10.1038/s41467-021-21295-0
- Fernandez M, Thompson J, Calle A. Novel feed additive delivers antimicrobial copper and influences fecal microbiota in pigs. Microbiol Spectr. 2024;12(6):e04280–23. doi: 10.1128/spectrum.04280-23
- Chen X, Xu J, Ren E, et al. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe. 2018;49:30–40. doi: 10.1016/j.anaerobe.2017.12.002
- Quan J, Xu C, Ruan D, et al. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol. 2023;14(1):143. doi: 10.1186/s40104-023-00943-z
- Bian G, Ma S, Zhu Z, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–1577. doi: 10.1111/1462-2920.13272
- Konstantinov SR, Awati AA, Williams BA, et al. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 2006;8(7):1191–1199. doi: 10.1111/j.1462-2920.2006.01009.x
- Choudhury R, Middelkoop A, de Souza JG, et al. Impact of early-life feeding on local intestinal microbiota and digestive system development in piglets. Sci Rep. 2021;11(1):4213. doi: 10.1038/s41598-021-83756-2
- Fulde M, Sommer F, Chassaing B, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature. 2018;560(7719):489–493. doi: 10.1038/s41586-018-0395-5
- Kurkjian HM, Akbari MJ, Momeni B. The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Computat Biol. 2021;17(1):e1008643. doi: 10.1371/journal.pcbi.1008643
- Newberry RC, Wood-Gush DGM. The suckling behaviour of domestic pigs in a semi-natural environment. Behaviour. 1985;95:11–25. doi: 10.1163/156853985X00028
- Knecht D, Cholewińska P, Jankowska-Mąkosa A, Czyż K. Development of swine’s digestive tract microbiota and its relation to production indices — A review. Animals (Basel). 2020;10(3):527. doi: 10.3390/ani10030527
- Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica. 2017;59(1):31. doi: 10.1186/s13028-017-0299-7
- Varel VH, Yen JT. Microbial perspective on fiber utilization by swine.J Anim Sci. 1997;75(10):2715–2722. doi: 10.2527/1997.75102715x
- Xiong X, Tan B, Song M, et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci. 2019;6:46. doi: 10.3389/fvets.2019.00046
- Kuller WI, Soede NM, van Beers-Schreurs HMG, et al. Effects of intermittent suckling and creep feed intake on pig performance from birth to slaughter. J Anim Sci. 2007;85(5):1295–1301. doi: 10.2527/jas.2006-177
- Xiao L, Estellé J, Kiilerich P, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1(12):16161.doi: 10.1038/nmicrobiol.2016.161
- Chen C, Huang X, Fang S, et al. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs.Front Microbiol. 2018;9:2626. doi: 10.3389/fmicb.2018.02626
- Rahman R, Fouhse JM, Ju T, et al. A comparison of wild boar and domestic pig microbiota does not reveal a loss of microbial species but an increase in alpha diversity and opportunistic genera in domestic pigs. Microbiol Spectr. 2024;12(10):e00843–24. doi: 10.1128/spectrum.00843-24
- Quan J, Cai G, Ye J, et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci Rep. 2018;8(1):4536.doi: 10.1038/s41598-018-22692-0
- Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, et al. Changes in the microbiome profile in different parts of the intestine in piglets with diarrhea. Animals. 2022;12(3):320. doi: 10.3390/ani12030320
- Korchagina AYu, Bryndina LV. Determination of species diversity of pig intestinal microbiome in order to create a consortium of microorganisms for wastewater treatment from organic contaminants. In: Koschaev AG, Stepanova AV, editors. Proceedings of the All-Russian conferences with international participation: “Health-saving technologies, quality and safety of food products”; 19 Nov 2021; Krasnodar. Krasnodar: Trubilin; 2021. P. 179–184. EDN: YLPQSS (In Russ.)
- Gryaznova M, Smirnova Y, Burakova I, et al. Characteristics of the fecal microbiome of piglets with diarrhea identified using shotgun metagenomics sequencing. Animals. 2023;13(14):2303. doi: 10.3390/ani13142303
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Study of the diversity of fungal microorganisms in the gut of swine with different feed conversion rate. Scientific notes of the Educational Institution Vitebsk State Academy of Veterinary Medicine of the Order of the Badge of Honor. 2023;59(4):85–89. doi: 10.52368/2078-0109-2023-59-4-85-89EDN: DRZGGK
- Lysenko YuA, Koshaev AG, Belyak VA, et al. Analysis, isolation and identification of the microbiome from the ceca of the intestines of industrial pigs. Izvestiya of Timiryazev Agricultural Academy. 2024;(4):168–183. doi: 10.26897/0021-342X-2024-4-168-183 EDN: IFSUKJ
- Dumont MG, Pommerenke B, Casper P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep. 2013;5(5):757–764.doi: 10.1111/1758-2229.12078
- Xu J, Xu R, Jia M, et al. Metatranscriptomic analysis of colonic microbiota’s functional response to different dietary fibers in growing pigs. Anim Microbiome. 2021;3(1):45. doi: 10.1186/s42523-021-00108-1
- Gosalbes MJ, Durbán A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PloS one. 2011;6(3):e17447. doi: 10.1371/journal.pone.0017447
- Shan T, Li L, Simmonds P, et al. The fecal virome of pigs on a high-density farm. J Virol. 2011;85(22):11697–11708. doi: 10.1128/JVI.05217-11
- Urubschurov V, Janczyk P, Souffrant W-B, et al. Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions. FEMS Microbiol Ecol. 2011;77(3):493–502. doi: 10.1111/j.1574-6941.2011.01129.x
- Chen Q, Lyu W, Pan C, et al. Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs. Sci Total Environ. 2024;927:172078. doi: 10.1016/j.scitotenv.2024.172078
- Meene A, Gierse L, Schwaiger T, et al. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol. 2023;14:1250140. doi: 10.3389/fmicb.2023.1250140
- Crespo-Piazuelo D, Estellé J, Revilla M, et al. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 2018;8(1):12727.doi: 10.1038/s41598-018-30932-6
- Lamendella R, Santo Domingo JW, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 2011;11:103. doi: 10.1186/1471-2180-11-103
- Velayudhan DE, Kim IH, Nyachoti CM. Characterization of dietary energy in swine feed and feed ingredients: a review of recent research results.Asian-Australas J Anim Sci. 2015;28(1):1–13. doi: 10.1186/1471-2180-11-103
- Tiwari UP, Singh AK, Jha R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Anim Nutr. 2019;5(3):217–226.doi: 10.1016/j.aninu.2019.04.003
- Li H, Han L, Zhou F, et al. Ningxiang pig-derived microbiota affects the growth performance, gut microbiota, and serum metabolome of nursery pigs. Animals. 2024;14(17):2450. doi: 10.3390/ani14172450
- Pandey S, Kim ES, Cho JH, et al. Swine gut microbiome associated with non-digestible carbohydrate utilization. Front Vet Sci. 2023;10:1231072. doi: 10.3389/fvets.2023.1231072
- Tang X, Zhang L, Wang L, et al. Multi-omics analysis reveals dietary fiber’s impact on growth, slaughter performance, and gut microbiome in Durco × Bamei crossbred pig. Microorganisms. 2024;12(8):1674.doi: 10.3390/microorganisms12081674
- Zhang L, Yue Y, Shi M, et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem. 2020;320:126648. doi: 10.1016/j.foodchem.2020.126648
- Zhang J, Jiang Q, Du Z, et al. Knowledge graph-derived feed efficiency analysis via pig gut microbiota. Sci Rep. 2024;14(1):13939.doi: 10.1038/s41598-024-64835-6
- Pieper R, Kröger S, Richter JF, et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J Nutr. 2012;142(4):661–667.doi: 10.3945/jn.111.156190
- Liu G, Gu K, Liu X, et al. Dietary glutamate enhances intestinal immunity by modulating microbiota and Th17/Treg balance-related immune signaling in piglets after lipopolysaccharide challenge. Food Res Int. 2023;166:112597. doi: 10.1016/j.foodres.2023.112597
- Yang Q, Huang X, Zhao S, et al. Structure and function of the fecal microbiota in diarrheic neonatal piglets. Front Microbiol. 2017;8:502.doi: 10.3389/fmicb.2017.00502
- Liao SF, Ji F, Fan P, Denryter K. Swine gastrointestinal microbiota and the effects of dietary amino acids on its composition and metabolism.Int J Mol Sci. 2024;25(2):1237. doi: 10.3390/ijms25021237
- Gryaznova MV, Smirnova YuD, Burakova IYu, et al. Analysis of the genes of enzymes of metabolic pathways in the intestines of the newborn piglets with diarrhea. Bulletin of veterinary pharmacology. 2023;(4):163–174. doi: 10.17238/issn2541-8203.2023.4.163 EDN: TDELWK
- Yang H, Huang X, Fang S, et al. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci Rep. 2016;6(1):27427. doi: 10.1038/srep27427
- Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: A review. J Anim Sci Biotechnol. 2013;4:35. doi: 10.1186/2049-1891-4-35
- Li J. Current status and prospects for in-feed antibiotics in the different stages of pork production — A review. Asian-Australas J Anim Sci. 2017;30(12):1667–1673. doi: 10.5713/ajas.17.0418
- Lekagul A, Tangcharoensathien V, Yeung S. Patterns of antibiotic use in global pig production: a systematic review. Vet Anim Sci. 2019;7:100058. doi: 10.1016/j.vas.2019.100058
- Munk P, Yang D, Röder T, et al. The European livestock resistome. Msystems. 2024;9(4):e01328–23. doi: 10.1128/msystems.01328-23
- Forcina G, Pérez-Pardal L, Carvalheira J, Beja-Pereira A. Gut microbiome studies in livestock: achievements, challenges, and perspectives.Animals. 2022;12(23):3375. doi: 10.3390/ani12233375
- Keum GB, Kim ES, Cho J, et al. Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. J Anim Sci Technol. 2023;65(1):175–182. doi: 10.5187/jast.2022.e103
- Wang Y, Hu Y, Liu F, et al. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ Int. 2020;138:105649.doi: 10.1016/j.envint.2020.10564
- Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5:103. doi: 10.1186/s40168-017-0324-0
- Neher TP, Soupir ML, Andersen DS, et al. Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA. Front Antibiot. 2023;2:1116785. doi: 10.3389/frabi.2023.1116785
- Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics. 2023;12(2):328.doi: 10.3390/antibiotics12020328
- Wang N, Guo X, Yan Z, et al. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China. PLoS One. 2016;11(7):e0156889.doi: 10.1371/journal.pone.0156889
- Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep. 2023;13(1):11999. doi: 10.1038/s41598-023-39204-4
- Wang C, Dong D, Strong PJ, et al. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome. 2017;5(1):103. doi: 10.1186/s40168-017-0324-0
- Selvam A, Xu D, Zhao Z, Wong JW. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Biores Technol. 2012;126:383–390. doi: 10.1016/j.biortech.2012.03.045
- Scicchitano D, Leuzzi D, Babbi G, et al. Dispersion of antimicrobial resistant bacteria in pig farms and in the surrounding environment. Anim Microbiome. 2024;6(1):17. doi: 10.1186/s42523-024-00305-8
- Donnik IM, Bykova OA, Lysova YaYu, et al. Dynamics of antibiotic susceptibility of Enterococcus faecium strains at the dairy farms in the regions with various levels of agrocoenosis contamination. Veterinaria Kubani. 2019;(1):7–10. doi: 10.33861/2071-8020-2019-1-7-10 EDN: JQRSTW
- Krivonogova AS, Moiseeva KV, Lysova AV. Antibiotic susceptibility of cattle microflora in the technogenic polluted areas. Legal regulation inveterinary medicine. 2017;(3):159–161. EDN: ZHZWPP
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Abundance of bacterial antibiotic resistance genes in swine during the fattening period (Sus scrofa domesticus). Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):96–101. doi: 10.52368/2078-0109-2023-59-4-96-101 EDN: QUAKGI
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Assessment of the relative abundance of antibiotic resistance genes of bacteria in the gut of piglets (Sus scrofa domesticus) in the early neonatal period. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2023;59(4):89–95. doi: 10.52368/2078-0109-2023-59-4-89-95 EDN: DSAGXS
- Syromyatnikov MYu, Shabunin SV, Nesterova EYu, et al. Analysis of antibiotic resistance genes of Escherichia coli from the gut of the piglets with diarrhea. “Transactions of the educational establishment “Vitebsk the Order of “the Badge of Honor” State Academy of Veterinary Medicine”. 2024;60(2):95–100. doi: 10.52368/2078-0109-2024-60-2-95-100 EDN: QAXUCK
Дополнительные файлы
