Shotgun proteomics in the study of adaptive stress responses of plant proteome

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Due to oncoming climate changes, droughts, high salinity, extreme temperatures became quite common stressors universally occurring in the most of terrestrial habitats. Expansions of these changes are often accompanied with strong herbivore attacks. Due to the outstanding impact of these factors on sustainable agriculture, since several last decades, the biochemistry and molecular biology of plant stress response remains in the focus of the research interest worldwide. Thus, bottom-up proteomics became a versatile tool of plant research in general and of stress biology in particular. As plant-derived materials are recognized as an extremely complex matrix, which is rich in polysaccharides, polyphenols and hardly water-soluble proteins, their proteome is typically analyzed by gel-based techniques. However, recent advances in sample preparation techniques (first of all — protein solubilization and digestion) allowed establishment of gel-free methods for plant-derived samples. Implementation of high-throughput nano-flow reversed phase-high performance liquid chromatography coupled on-line to electrospray ionization mass spectrometry (nanoRP-HPLC-ESI-MS) gave access to data-rich datasets giving high protein identification rates. Moreover, high reproducibility of HPLC allows highly sensitive and precise quantification. Therefore, over the recent decade, shotgun proteomics became the method of choice in the study of adaptive stress responses of plant proteome. Here we address the bottom-up shotgun proteomics strategy in plant biology and discuss its application to the study of plant stress response. We also discuss the main steps of the plant proteome analysis pipeline and address emerging problems and future perspectives.

Full Text

Restricted Access

About the authors

Daria P. Gorbach

K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science

Email: daria.gorba4@yandex.ru
ORCID iD: 0000-0001-6836-5004
Russian Federation, Moscow

Tatiana S. Leonova

Leibniz Institute of Plant Biochemistry

Email: tatiana.leonova@ipb-halle.de
ORCID iD: 0000-0002-7153-5059
SPIN-code: 6132-3216
Germany, Halle (Saale)

Anastasia А. Orlova

K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science

Email: lanas_95@mail.ru
ORCID iD: 0000-0002-7836-5785

Cand. Sci. (Pharmacy)

Russian Federation, Moscow

Nadezhda V. Frolova

K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science

Email: frolovanadja@yandex.ru
ORCID iD: 0000-0002-1895-1133
SPIN-code: 1633-7805

Cand. Sci. (Biology)

Russian Federation, Moscow

Anastasia K. Gurina

K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science; Saint Petersburg State University

Email: gnastyak0@gmail.com
ORCID iD: 0009-0000-6514-1240
Russian Federation, Moscow; Saint Petersburg

Katerina V. Danko

Saint Petersburg State University

Email: danko_katerina@mail.ru
ORCID iD: 0000-0003-3987-2175
Russian Federation, Saint Petersburg

Elena M. Lukasheva

Saint Petersburg State University

Email: elena_lukasheva@mail.ru
ORCID iD: 0000-0002-0889-2395
SPIN-code: 6071-3591
Russian Federation, Saint Petersburg

Maria A. Cherevatskaya

Saint Petersburg State University

Email: maria.cherevatskaya@gmail.com
ORCID iD: 0000-0002-5604-3400
SPIN-code: 9395-1519

Cand. Sci. (Chemistry)

Russian Federation, Saint Petersburg

Elena V. Tsvetkova

Saint Petersburg State University

Email: evtsvetkova72@mail.ru
ORCID iD: 0000-0002-2022-615X
SPIN-code: 9221-5326

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Andrei A. Frolov

K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science

Author for correspondence.
Email: Andrej.Frolov@ipb-halle.de
ORCID iD: 0000-0003-3250-5858
SPIN-code: 5105-2490

Dr. Sci. (Biology)

Russian Federation, Moscow

References

  1. Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324. doi: 10.1016/j.cell.2016.08.029
  2. Sehgal A, Sita K, Siddique KHM, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci. 2018;9:1705. doi: 10.3389/fpls.2018.01705
  3. Field TEB, Barros VR, Dokken DJ, et al. IPCC. 2014. Summary for policymakers. In climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: MacCracken S, Mastrandrea PR, editors. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. 2014.
  4. Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266–269. doi: 10.1126/science.aaz7614
  5. Ghatak A, Chaturvedi P, Weckwerth W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 2017;8:757. doi: 10.3389/fpls.2017.00757
  6. Kim K-H, Lee B-M. Effects of climate change and drought tolerance on maize growth. Plants. 2023;12(20):3548. doi: 10.3390/plants12203548
  7. McMillen MS, Mahama AA, Sibiya J, et al. Improving drought tolerance in maize: Tools and techniques. Front Genet. 2022;13:1001001. doi: 10.3389/fgene.2022.1001001
  8. Sahebi M, Hanafi MM, Rafii MY, et al. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. Biomed Res Int. 2018;2018:3158474. doi: 10.1155/2018/3158474
  9. Adel S, Carels N. Plant tolerance to drought stress with emphasis on wheat. Plants. 2023;12(11):2170. doi: 10.3390/plants12112170
  10. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–462. doi: 10.1016/j.cub.2014.03.034
  11. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19. doi: 10.1016/j.tplants.2016.08.002
  12. Shumilina J, Kiryushkin AS, Frolova N, et al. Integrative proteomics and metabolomics analysis reveals the role of small signaling peptide rapid alkalinization factor 34 (RALF34) in cucumber roots. Int J Mol Sci. 2023;24(8):7654. doi: 10.3390/ijms24087654
  13. Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021
  14. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410. doi: 10.1016/S1360-1385(02)02312-9
  15. Leymarie J, Vitkauskaité G, Hoang HH, et al. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2012;53(1):96–106. doi: 10.1093/pcp/pcr129
  16. Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 2017;174(1):421–434. doi: 10.1104/pp.17.00030
  17. Liu J, Moyankova D, Lin C-T, et al. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC Plant Biol. 2018;18(1):351. doi: 10.1186/s12870-018-1566-0
  18. Mamontova T, Afonin AM, Ihling C, et al. Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules. 2019;24(8):1603. doi: 10.3390/molecules24081603
  19. Friso G, van Wijk KJ. Update: Post-translational protein modifications in plant metabolism. Plant Physiol. 2015;169(3):1469–1487. doi: 10.1104/pp.15.01378
  20. Smolikova G, Gorbach D, Lukasheva E, et al. Bringing new methods to the seed proteomics platform: challenges and perspectives. Int J Mol Sci. 2020;21(23):9162. doi: 10.3390/ijms21239162
  21. Michaletti A, Naghavi MR, Toorchi M, et al. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep. 2018;8(10):5710. doi: 10.1038/s41598-018-24012-y
  22. Balotf S, Wilson R, Tegg RS, et al. Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions. Proteomes. 2022;10(1):5. doi: 10.3390/proteomes10010005
  23. Aslam B, Basit M, Nisar MA, et al. Proteomics: Technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196. doi: 10.1093/chromsci/bmw167
  24. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016
  25. Oracz K, El-Maarouf Bouteau H, Farrant JM, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50(3):452–465. doi: 10.1111/j.1365-313X.2007.03063.x
  26. Liebert MA, Pitzschke A, Forzani C, Hirt H. ROS signaling in plants. Antioxidants and Redox Signaling. 2006;8(9–10):1757. doi: 10.1089/ars.2006.8.1757
  27. Kuznetsova K, Efremova E, Dodueva I, et al. Functional modules in the meristems: ‘Tinkering’ in action. Plants. 2023;12(20):3661. doi: 10.3390/plants12203661
  28. Shal B, Ding W, Ali H, et al. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. 2018;9:548. doi: 10.3389/fphar.2018.00548
  29. Frolov A, Bilova T, Paudel G, et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. J Plant Physiol. 2017;208:70–83. doi: 10.1016/j.jplph.2016.09.013
  30. Ang MC-Y, Saju JM, Porter TK, et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun. 2024;15(1):2943. doi: 10.1038/s41467-024-47082-1
  31. Saxena I, Srikanth S, Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci. 2016;7:570. doi: 10.3389/fpls.2016.00570
  32. Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62(10):3321–3338. doi: 10.1093/jxb/err031
  33. Khan MIR, Fatma M, Per TS, et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015;6:462. doi: 10.3389/fpls.2015.00462
  34. Yuan S, Lin H-H. Role of salicylic acid in plant abiotic stress. Z Naturforsch C. 2008;63(5–6):313–320. doi: 10.1515/znc-2008-5-601
  35. Greifenhagen U, Frolov A, Blüher M, Hoffmann R. Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes. J Biol Chem. 2016;291(18):9610–9616. doi: 10.1074/jbc.M115.702860
  36. Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(S1):3–27. doi: 10.3109/10715762.2013.815348
  37. Shumilina J, Kusnetsova A, Tsarev A, et al. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? Int J Mol Sci. 2019;20(9):2366. doi: 10.3390/ijms20092366
  38. Kosová K, Vítámvás P, Urban MO, et al. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front Plant Sci. 2018;9:122. doi: 10.3389/fpls.2018.00122
  39. Cassier-Chauvat C, Marceau F, Farci S, et al. The glutathione system: A journey from cyanobacteria to higher eukaryotes. Antioxidants. 2023;12(6):1199. doi: 10.3390/antiox12061199
  40. Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43. doi: 10.1111/nph.12797
  41. Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells. 2019;9(1):105. doi: 10.3390/cells9010105
  42. Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol. 2022;64(2):301–341. doi: 10.1111/jipb.13215
  43. Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 2013;163(2):523–530. doi: 10.1104/pp.113.222539
  44. Godoy F, Olivos-Hernández K, Stange C, Handford M. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants. 2021;10(2):186. doi: 10.3390/plants10020186
  45. Atta AH, Mouneir SM. Antidiarrhoeal activity of some Egyptian medicinal plant extracts. J Ethnopharmacol. 2004;92(2–3):303–309. doi: 10.1016/j.jep.2004.03.017
  46. Shen N, Wang T, Gan Q, et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531
  47. Catarino MD, Silva AMS, Cardoso SM. Fucaceae: A source of bioactive phlorotannins. Int J Mol Sci. 2017;18(6):1327. doi: 10.3390/ijms18061327
  48. Liu L, Xu F-R, Wang Y-Z. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J Ethnopharmacol. 2020;263:112792. doi: 10.1016/j.jep.2020.112792
  49. Rosas-Saavedra C, Stange C. Biosynthesis of carotenoids in plants: Enzymes and color. In: Stange C, editor. Carotenoids in nature. Subcellular biochemistry. Vol. 79. Springer, Cham; 2016. P. 35–69. doi: 10.1007/978-3-319-39126-7_2
  50. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–537. doi: 10.1126/science.286.5439.531
  51. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1(2):203–209. doi: 10.1016/S1535-6108(02)00030-2
  52. Wang Y, Klijin J, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):671–679. doi: 10.1016/S0140-6736(05)70933-8
  53. Kodera C, Just J, Da Rocha M, et al. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics. 2021;22(1):268. doi: 10.1186/s12864-021-07503-7
  54. Fehér A. A common molecular signature indicates the pre-meristematic state of plant calli. Int J Mol Sci. 2023;24(17):13122. doi: 10.3390/ijms241713122
  55. Vajda V, Pucetaite M, McLoughlin S, et al. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nat Ecol Evol. 2017;1(8):1093–1099. doi: 10.1038/s41559-017-0224-5
  56. Kitashova A, Brodsky V, Chaturvedi P, et al. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. J Plant Physiol. 2023;290:154116. doi: 10.1016/j.jplph.2023.154116
  57. Ruan Y-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65(1):33–67. doi: 10.1146/annurev-arplant-050213-040251
  58. Alpert P, Simms EL. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol. 2002;16(3):285–297. doi: 10.1023/A:1019684612767
  59. Stotz GC, Salgado-Luarte C, Escobedo VM, et al. Global trends in phenotypic plasticity of plants. Ecol Lett. 2021;24(10):2267–2281. doi: 10.1111/ele.13827
  60. Scheepens JF, Deng Y, Bossdorf O. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AoB Plants. 2018;10(4):ply043. doi: 10.1093/aobpla/ply043
  61. Vanwallendael A, Soltani A, Emery NC, et al. A molecular view of plant local adaptation: incorporating stress-response networks. Annu Rev Plant Biol. 2019;70:559–583. doi: 10.1146/annurev-arplant-050718-100114
  62. Fercha A, Capriotti AL, Caruso G, et al. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics. 2014;108:238–257. doi: 10.1016/j.jprot.2014.04.040
  63. Makavitskaya M, Svistunenko D, Navaselsky I, et al. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels. J Exp Bot. 2018;69(14):3477–3489. doi: 10.1093/jxb/ery056
  64. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D531. doi: 10.1093/nar/gkac1052
  65. Gough C, Sadanandom A. Understanding and exploiting post-translational modifications for plant disease resistance. Biomolecules. 2021;11(8):1122. doi: 10.3390/biom11081122
  66. Xin X, Lin X-H, Zhou Y-C, et al. Proteome analysis of maize seeds: the effect of artificial ageing. Physiol Plant. 2011;143(2): 126–138. doi: 10.1111/j.1399-3054.2011.01497.x
  67. Yin X, Wang X, Komatsu S. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sci. 2018;19(4):401–412. doi: 10.2174/1389203718666170209151048
  68. Sugiyama N, Nakagami H, Mochida K, et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol. 2008;4:193. doi: 10.1038/msb.2008.32
  69. Luan S. Protein phosphatases in plants. Annu Rev Plant Biol. 2003;54:63–92. doi: 10.1146/annurev.arplant.54.031902.134743
  70. Zhang WJ, Zhou Y, Zhang Y, et al. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep. 2023;42(7):112729. doi: 10.1016/j.celrep.2023.112729
  71. Doroodian P, Hua Z. The ubiquitin switch in plant stress response. Plants. 2021;10(2):246. doi: 10.3390/plants10020246
  72. Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol. 2010;154(4): 1983–1997. doi: 10.1104/pp.110.164749
  73. Liu Y-C, Wu Y-R, Huang X-H, et al. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant. 2011;4(6):938–946. doi: 10.1093/mp/ssr030
  74. Seo DH, Ryu MY, Jammes F, et al. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol. 2012;160(1):556–568. doi: 10.1104/pp.112.202143
  75. Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells. 2022;11(5):890. doi: 10.3390/cells11050890
  76. Singh M, Singh A, Yadav N, Yadav DK. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants. Front Plant Sci. 2022;13:993194. doi: 10.3389/fpls.2022.993194
  77. Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci. 2021;78(6):2641–2664. doi: 10.1007/s00018-020-03723-4
  78. Fang S, Hou X, Liang X. SIZ1-mediated SUMOylation responds to multiple abiotic stresses in plants. Environ Exp Bot. 2022;201:104977. doi: 10.1016/j.envexpbot.2022.104977
  79. Soboleva A, Schmidt R, Vikhnina M, et al. Maillard proteomics: opening new pages. Int J Mol Sci. 2017;18(12):2677. doi: 10.3390/ijms18122677
  80. Strasser R. Plant protein glycosylation. Glycobiology. 2016;26(9): 926–939. doi: 10.1093/glycob/cww023
  81. Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol. 2018;80:133–141. doi: 10.1016/j.semcdb.2017.07.005
  82. Frolova N, Soboleva A, Nguyen VD, et al. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chem. 2021;347:128951. doi: 10.1016/j.foodchem.2020.128951
  83. Soboleva A, Mavropulo-Stolyarenko G, Karonnova T, et al. Multiple glycation sites in blood plasma proteins as an integrated biomarker of type 2 diabetes mellitus. Int J Mol Sci. 2019;20(9):2329. doi: 10.3390/ijms20092329
  84. Bilova T, Paudel G, Shilyaev N, et al. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem. 2017;292(38):15758–15776. doi: 10.1074/jbc.M117.794537
  85. Soboleva A, Frolova N, Bureiko K, et al. Dynamics of reactive carbonyl species in pea root nodules in response to polyethylene glycol (PEG)-induced osmotic stress. Int J Mol Sci. 2022;23(5):2726. doi: 10.3390/ijms23052726
  86. Rabbani N, Al-Motawa M, Thornalley PJ. Protein glycation in plants — an under-researched field with much still to discover. Int J Mol Sci. 2020;21(11):3942. doi: 10.3390/ijms21113942
  87. Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot. 2020;71(17): 5179–5190. doi: 10.1093/jxb/eraa202
  88. Wakeel A, Ali I, Khan AR, et al. Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. Plant Cell Rep. 2018;37(1):51–59. doi: 10.1007/s00299-017-2205-1
  89. Wang J, Liu C, Chen Y, et al. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol. 2021;23(9): 4841–4855. doi: 10.1111/1462-2920.15725
  90. Cui X, Dard A, Reichheld J-P, Zhou D-X. Multifaceted functions of histone deacetylases in stress response. Trends Plant Sci. 2023;28(11):1245–1256. doi: 10.1016/j.tplants.2023.06.006
  91. Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 2008;146(1): 149–161. doi: 10.1104/pp.107.111674
  92. Liu X, Yang S, Zhao M, et al. Transcriptional repression by histone deacetylases in plants. Mol Plant. 2014;7(5):764–772. doi: 10.1093/mp/ssu033
  93. Tiwari M, Kumar R, Min D, Jagadish SVK. Genetic and molecular mechanisms underlying root architecture and function under heat stress — A hidden story. Plant Cell Environ. 2022;45(3):771–788. doi: 10.1111/pce.14266
  94. An C, Deng L, Zhai H, et al. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol Plant. 2022;15(8):1329–1346. doi: 10.1016/j.molp.2022.06.014
  95. Zheng Y, Ding Y, Sun X, et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot. 2016;67(6):1703–1713. doi: 10.1093/jxb/erv562
  96. Poulios S, Tsilimigka F, Mallioura A, et al. Histone acetyltransferase GCN5 affects auxin transport during root growth by modulating histone acetylation and gene expression of PINs. Plants. 2022;11(24):3572. doi: 10.3390/plants11243572
  97. de Rooij PGH, Perrella G, Kaiserli E, van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. J Exp Bot. 2020;71(20):6211–6225. doi: 10.1093/jxb/eraa335
  98. Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol. 2008;59:21–39. doi: 10.1146/annurev.arplant.59.032607.092830
  99. Graska J, Fidler J, Gietler M, et al. Nitric oxide in plant functioning: Metabolism, signaling, and responses to infestation with ecdysozoa parasites. Biology. 2023;12(7):927. doi: 10.3390/biology12070927
  100. Chaki M, Fernández-Ocaña AM, Valderrama R, et al. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 2009;50(2):265–279. doi: 10.1093/pcp/pcn196
  101. Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019;20(8):1163–1178. doi: 10.1111/mpp.12821
  102. Huang D, Hou J, Zhang J, et al. Protein S-nitrosylation in programmed cell death in plants. Cell Mol Life Sci. 2019;76(10): 1877–1887. doi: 10.1007/s00018-019-03045-0
  103. Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot. 2014;65(2):527–538. doi: 10.1093/jxb/ert396
  104. Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, et al. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. Front Plant Sci. 2022;13:1027730. doi: 10.3389/fpls.2022.1027730
  105. Boyd LA, Ridout C, O’Sullivan DM, et al. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 2013;29(4):233–240. doi: 10.1016/j.tig.2012.10.011
  106. Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci. 2013;4:519. doi: 10.3389/fpls.2013.00519
  107. Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytol. 2020;225(5):1852–1872. doi: 10.1111/nph.16340
  108. Fan K-T, Wang K-H, Chang W-H, et al. Application of data-independent acquisition approach to study the proteome change from early to later phases of tomato pathogenesis responses. Int J Mol Sci. 2019;20(4):863. doi: 10.3390/ijms20040863
  109. Scalabrin E, Radaelli M, Rizzato G, et al. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses. Anal Bioanal Chem. 2015;407(21):6357–6368. doi: 10.1007/s00216-015-8770-7
  110. Dodueva IE, Lebedeva MA, Kuznetsova KA, et al. Plant tumors: a hundred years of study. Planta. 2020;251(4):82. doi: 10.1007/s00425-020-03375-5
  111. Liu J, Moyankova D, Djilianov D, Deng X. Common and specific mechanisms of desiccation tolerance in two gesneriaceae resurrection plants. multiomics evidences. Front Plant Sci. 2019;10:1067. doi: 10.3389/fpls.2019.01067
  112. Xiao L, Yang G, Zhang L, et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. PNAS USA. 2015;112(18):5833–5837. doi: 10.1073/pnas.1505811112
  113. García-Fontana C, Vilchez JI, Manzanera M. Proteome comparison between natural desiccation-tolerant plants and drought-protected Caspicum annuum plants by Microbacterium sp. 3J1. Front Microbiol. 2020;11:1537. doi: 10.3389/fmicb.2020.01537
  114. Vidović M, Battisti I, Pantelic A, et al. Desiccation tolerance in Ramonda serbica Panc.: an integrative transcriptomic, proteomic, metabolite and photosynthetic study. Plants. 2022;11(9):1199. doi: 10.3390/plants11091199
  115. Chandra J, Keshavkant S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol Mol Biol Plant. 2018;24(1):75–87. doi: 10.1007/s12298-017-0487-y
  116. Pucker B, Schilbert HM. Genomics and transcriptomics advance in plant sciences. In: Singh SP, Upadhyay SK, Pandey A, Kumar S, editors. Molecular approaches in plant biology and environmental challenges. Singapore: Springer; 2019. P. 419–448. doi: 10.1007/978-981-15-0690-1_19
  117. Khodadadian A, Darzi S, Haghi-Daredeh S, et al. Genomics and transcriptomics: The powerful technologies in precision medicine. Int J Gen Med. 2020;13:627–640. doi: 10.2147/IJGM.S249970
  118. Frolov A, Mamontova T, Ihling C, et al. Mining seed proteome: from protein dynamics to modification profiles. Biol Commun. 2018;63(1):43–58. doi: 10.21638/spbu03.2018.106
  119. McDonald WH, Yates JR III. Shotgun proteomics and biomarker discovery. Dis Markers. 2002;18(2):99–105. doi: 10.1155/2002/505397
  120. Meena KK, Sorty AM, Bitla UM, et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci. 2017;8:172. doi: 10.3389/fpls.2017.00172
  121. Zander M, Lewsey MG, Clark NM, et al. Integrated multi-omics framework of the plant response to jasmonic acid. Nat Plant. 2020;6(3):290–302. doi: 10.1038/s41477-020-0605-7
  122. Halder A, Verma A, Biswas D, Srivastava S. Recent advances in mass-spectrometry based proteomics software, tools and databases. Drug Discov Today Technol. 2021;39:69–79. doi: 10.1016/j.ddtec.2021.06.007
  123. Meyer JG. Qualitative and quantitative shotgun proteomics data analysis from data-dependent acquisition mass spectrometry. In: Carrera M, Mateos J, editors. Shotgun proteomics. Methods in molecular biology. Vol. 2259. New York: Humana; 2021. P. 297–308. doi: 10.1007/978-1-0716-1178-4_19
  124. Yang Y, Saand MA, Huang L, et al. Applications of multi-omics technologies for crop improvement. Front Plant Sci. 2021;12:563953. doi: 10.3389/fpls.2021.563953
  125. Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem. 2016;9:449–472. doi: 10.1146/annurev-anchem-071015-041535
  126. Komatsu S, Wang X, Yin X, et al. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through soybean proteome database. J Proteom. 2017;163:52–66. doi: 10.1016/j.jprot.2017.05.009
  127. Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol Cell Proteom. 2012;11(6):O111.016717. doi: 10.1074/mcp.O111.016717
  128. Gilar M, Belenky A, Wang BH. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A. 2001;921(1):3–13. doi: 10.1016/S0021-9673(01)00833-0
  129. Spiller S, Frolov A, Hoffmann R. Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers. Protein Pept Lett. 2018;24(10):887–896. doi: 10.2174/0929866524666170202124120
  130. Makarov A, Denisov E, Lange O. Performance evaluation of a high-field Orbitrap mass analyzer. J Am Soc Mass Spectrom. 2009;20(8):1391–1396. doi: 10.1016/j.jasms.2009.01.005
  131. Swearingen KE, Moritz RL. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Expert Rev Proteom. 2012;9(5):505–517. doi: 10.1586/epr.12.50
  132. Thermo Fisher Scientific. Proteome discoverer. User guide. Software version 2.2. Thermo Fisher Scientific Inc; 2017.
  133. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b. — range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511
  134. Cox J, Neuhauser N, Michalski A, et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteom Res. 2011;10(4):1794–1805. doi: 10.1021/pr101065j
  135. Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(20):2337–2342. doi: 10.1002/rcm.1196
  136. Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Mass Spectrom Rev. 2019;38(6):461–482. doi: 10.1002/mas.21595
  137. Xie F, Liu T, Qian W-J, et al. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–25449. doi: 10.1074/jbc.R110.199703
  138. Fernández-Costa C, Martínez-Bartolomé S, McClatchy DB, et al. Impact of the identification strategy on the reproducibility of the DDA and DIA results. J Proteome Res. 2020;19(8):3153–3161. doi: 10.1021/acs.jproteome.0c00153
  139. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785–1793. doi: 10.1021/pr101060v
  140. Ruiz-Perez D, Guan H, Madhivanan P, et al. So you think you can PLS-DA? BMC Bioinform. 2020;21(1):2. doi: 10.1186/s12859-019-3310-7
  141. Valentim-Neto PA, Rossi GB, Anacleto KB, et al. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis. J Sci Food Agric. 2016;96(3):927–932. doi: 10.1002/jsfa.7166
  142. Azevedo MS, Valentim-Neto PA, Seraglio SKT, et al. Proteome comparison for discrimination between honeydew and floral honeys from botanical species Mimosa scabrella Bentham by principal component analysis. J Sci Food Agric. 2017;97(13):4515–4519. doi: 10.1002/jsfa.8317
  143. Yang J, Zheng N, Soyeurt H, et al. Detection of plant protein in adulterated milk using nontargeted nano-high-performance liquid chromatography-tandem mass spectroscopy combined with principal component analysis. Food Sci Nutr. 2019;7(1):56–64. doi: 10.1002/fsn3.791
  144. Jones EA, Deininger S-O, Hogendoorn PCW, et al. Imaging mass spectrometry statistical analysis. J Proteom. 2012;75(16):4962–4989. doi: 10.1016/j.jprot.2012.06.014
  145. Kong W, Hui HWH, Peng H, Bin Goh WW. Dealing with missing values in proteomics data. Proteomics. 2022;22(23–24):e2200092. doi: 10.1002/pmic.202200092
  146. Välikangas T, Suomi T, Elo LL. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform. 2018;19(1):1–11. doi: 10.1093/bib/bbw095
  147. Vilhena MB, Franco MR, Schmidt D, et al. Evaluation of protein extraction methods for enhanced proteomic analysis of tomato leaves and roots. An Acad Bras Cienc. 2015;87(3):1853–1863. doi: 10.1590/0001-3765201520150116
  148. Yadeta KA, Elmore JM, Coaker G. Advancements in the analysis of the Arabidopsis plasma membrane proteome. Front Plant Sci. 2013;4:86. doi: 10.3389/fpls.2013.00086
  149. Shishova MF, Yemelyanov VV. Proteome and lipidome of plant cell membranes during development. Russian Journal of Plant Physiology. 2021;68(5):800–817. doi: 10.1134/S1021443721050162
  150. Mamontova T, Lukasheva E, Mavropolo-Stolyarenko G, et al. Proteome map of pea (Pisum sativum L.) embryos containing different amounts of residual chlorophylls. Int J Mol Sci. 2018;19(12):4066. doi: 10.3390/ijms19124066
  151. Rogowska-Wrzesinska A, Le Bihan M-C, Thaysen-Andersen M, Roepstorff P. 2D gels still have a niche in proteomics. J Proteomics. 2013;88:4–13. doi: 10.1016/j.jprot.2013.01.010
  152. Jorrín-Novo JV, Pascual J, Sanchez-Lukas R, et al. Fourteen years of plant proteomics reflected in Proteomics: Moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics. 2015;15(5–6):1089–1112. doi: 10.1002/pmic.201400349
  153. Jorrin-Novo JV, Komatsu S, Sanchez-Lucas R, Rodríguez de Francisco LE. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteom. 2019;198:1–10. doi: 10.1016/j.jprot.2018.08.016
  154. Frolov A, Didio A, Ihling C, et al. The effect of simulated microgravity on the Brassica napus seedling proteome. Funct Plant Biol. 2018;45(4):440. doi: 10.1071/FP16378
  155. Tan BC, Lim YS, Lau S. Proteomics in commercial crops: An overview. J Proteom. 2017;169:176–188. doi: 10.1016/j.jprot.2017.05.018
  156. Le Gall H, Philippe F, Domon J-M, et al. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112–166. doi: 10.3390/plants4010112
  157. Barua P, Subba P, Lande NV, et al. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire. J Proteom. 2016;143:199–208. doi: 10.1016/j.jprot.2016.04.015
  158. Křeček P, Skupa P, Libus J, et al. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10(12):249. doi: 10.1186/gb-2009-10-12-249
  159. Lu C, Liu X, Tang Y, et al. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. Int J Biol Macromol. 2023;258–1:128880. doi: 10.1016/j.ijbiomac.2023.128880
  160. Drakakaki G, van de Ven W, Pan S, et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 2012;22(2):413–424. doi: 10.1038/cr.2011.129
  161. Verdú M, Gómez JM, Valiente-Banuet A, Schöb C. Facilitation and plant phenotypic evolution. Trends Plant Sci. 2021;26(9):913–923. doi: 10.1016/j.tplants.2021.04.005
  162. Russell JJ, Theriot JA, Sood P, et al. Non-model model organisms. BMC Biol. 2017;15(1):55. doi: 10.1186/s12915-017-0391-5
  163. Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. Arabidopsis bioinformatics: tools and strategies. Plant J. 2021;108(6):1585–1596. doi: 10.1111/tpj.15547
  164. Heck M, Neely BA. Proteomics in non-model organisms: A new analytical frontier. J Proteom Res. 2020;19(9):3595–3606. doi: 10.1021/acs.jproteome.0c00448
  165. Romero-Rodríguez MC, Jorrín-Novo JV, Castillejo MA. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. J Proteom. 2019;197:60–70. doi: 10.1016/j.jprot.2018.11.003
  166. Larrainzar E, Wienkoop S, Weckwerth W, et al. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol. 2007;144(3):1495–1507. doi: 10.1104/pp.107.101618
  167. Bahmani M, Juhasz A, Broadbent J, et al. Proteome phenotypes discriminate the growing location and malting traits in field-grown barley. J Agric Food Chem. 2022;70(34):10680–10691. doi: 10.1021/acs.jafc.2c03816
  168. Yan S, Bhawal R, Yin Z, et al. Recent advances in proteomics and metabolomics in plants. Mol Hortic. 2022;2(1):17. doi: 10.1186/s43897-022-00038-9
  169. McDermaid A, Monier B, Zhao J, et al. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform. 2019;20(6):2044–2054. doi: 10.1093/bib/bby067
  170. Razzaq MK, Aleem M, Mansoor S, et al. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292. doi: 10.3390/ijms22031292
  171. Bourgeois DL, Kreeger PK. Partial least squares regression models for the analysis of kinase signaling. In: Tan AC, Huang P, editors. Kinase signaling networks. Methods in molecular biology. Vol. 1636. New York: Humana Press; 2017. P. 523–533. doi: 10.1007/978-1-4939-7154-1_32
  172. Hesami M, Alizadeh M, Jones AMP, Torkamaneh D. Machine learning: its challenges and opportunities in plant system biology. Appl Microbiol Biotechnol. 2022;106(9–10):3507–3530. doi: 10.1007/s00253-022-11963-6
  173. Wang P, Schumacher AM, Shiu S-H. Computational prediction of plant metabolic pathways. Curr Opin Plant Biol. 2022;66:102171. doi: 10.1016/j.pbi.2021.102171
  174. Chen L. Bioinformatics analysis of protein secretion in plants. In: Jiang L, editor. Plant protein secretion. Methods in molecular biology. Vol. 1662. New York: Humana Press; 2017. P. 33–43. doi: 10.1007/978-1-4939-7262-3_3
  175. Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462. doi: 10.1093/nar/gkv1070
  176. Milacic M, Beavers D, Conley P, et al. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024;52(D1):D672–D678. doi: 10.1093/nar/gkad1025
  177. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556
  178. Usadel B, Poree F, Nagel A, et al. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ. 2009;32(9):1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x
  179. Lohse M, Nagel A, Herter T, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014;37(5):1250–1258. doi: 10.1111/pce.12231
  180. Schwacke R, Ponce-Soto GY, Krause K, et al. MapMan4: A refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12(6):879–892. doi: 10.1016/j.molp.2019.01.003
  181. Hayashi T, Matsuzaki Y, Yanagisawa K, et al. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions. BMC Bioinform. 2018;19(S4):62. doi: 10.1186/s12859-018-2073-x
  182. Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi: 10.1093/nar/gkac1000
  183. Danko K, Lukasheva E, Zhukov VA, et al. Detergent-assisted protein digestion-on the way to avoid the key bottleneck of shotgun bottom-up proteomics. Int J Mol Sci. 2022;23(22):13903. doi: 10.3390/ijms232213903
  184. Leonova T, Ihling C, Saoud M, et al. Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? Front Plant Sci. 2022;13:874761. doi: 10.3389/fpls.2022.874761
  185. Petersen J, Rogowska-Wrzesinska A, Jensen ON. Functional proteomics of barley and barley chloroplasts — strategies, methods and perspectives. Front Plant Sci. 2013;4:52. doi: 10.3389/fpls.2013.00052
  186. Sun B, Liu Z, Liu J, et al. The utility of proteases in proteomics, from sequence profiling to structure and function analysis. Proteomics. 2023;23(6):e2200132. doi: 10.1002/pmic.202200132
  187. Obudulu O, Bygdell J, Sundberg B, et al. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genom. 2016;7(1):119. doi: 10.1186/s12864-016-2458-z
  188. Klčová B, Balarynova J, Trneny O, et al. Domestication has altered gene expression and secondary metabolites in pea seed coat. Plant J. 2024;118(6):2269–2295. doi: 10.1111/tpj.16734
  189. Galland M, He D, Lounifi I, et al. An integrated ‘multi-omics’ comparison of embryo and endosperm tissue-specific features and their impact on rice seed quality. Front Plant Sci. 2017;8:1984. doi: 10.3389/fpls.2017.01984
  190. Crandall SG, Gold KM, Jiménez-Gasco MDM, et al. A multi-omics approach to solving problems in plant disease ecology. PLoS One. 2020;15(9):e0237975–e0237975. doi: 10.1371/journal.pone.0237975

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effects of reactive oxygen species (ROS) generated in presence and absence of environmental stress factors.

Download (154KB)
3. Fig. 2. Formation of the principal reactive oxygen species (ROS) in the plant cell. O2–, superoxide radical; H2O2, hydrogen peroxide; 1O2, singlet oxygen; OH–, hydroxyl radical; PSI, photosystem I; SOD, superoxide dismutase; APX, ascorbate peroxidase; AsA, ascorbic acid; MDA, Malondialdehyde; NADH, Nicotinamide adenine dinucleotide; MDHAR, monodehydroascorbate reductase; DHA, docosahexaenoic acid; GSSG, glutathione disulfide; GSH, glutathione; NADP, nicotinamide adenine dinucleotide phosphate; CAT, catalase; GPX, glutathione peroxidase.

Download (153KB)
4. Fig. 3. Flow of the cell biochemical data.

Download (80KB)
5. Fig. 4. Comparative overview of the two shotgun mass spectrometry strategies, top-down and bottom-up approaches.

Download (109KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.