Shotgun proteomics in the study of adaptive stress responses of plant proteome
- Authors: Gorbach D.P.1, Leonova T.S.2, Orlova A.А.1, Frolova N.V.1, Gurina A.K.1,3, Danko K.V.3, Lukasheva E.M.3, Cherevatskaya M.A.3, Tsvetkova E.V.3, Frolov A.A.1
-
Affiliations:
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
- Leibniz Institute of Plant Biochemistry
- Saint Petersburg State University
- Issue: Vol 23, No 1 (2025)
- Pages: 39-63
- Section: Methodology in ecological genetics
- Submitted: 09.12.2024
- Accepted: 16.12.2024
- Published: 19.04.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/642716
- DOI: https://doi.org/10.17816/ecogen642716
- ID: 642716
Cite item
Abstract
Due to oncoming climate changes, droughts, high salinity, extreme temperatures became quite common stressors universally occurring in the most of terrestrial habitats. Expansions of these changes are often accompanied with strong herbivore attacks. Due to the outstanding impact of these factors on sustainable agriculture, since several last decades, the biochemistry and molecular biology of plant stress response remains in the focus of the research interest worldwide. Thus, bottom-up proteomics became a versatile tool of plant research in general and of stress biology in particular. As plant-derived materials are recognized as an extremely complex matrix, which is rich in polysaccharides, polyphenols and hardly water-soluble proteins, their proteome is typically analyzed by gel-based techniques. However, recent advances in sample preparation techniques (first of all — protein solubilization and digestion) allowed establishment of gel-free methods for plant-derived samples. Implementation of high-throughput nano-flow reversed phase-high performance liquid chromatography coupled on-line to electrospray ionization mass spectrometry (nanoRP-HPLC-ESI-MS) gave access to data-rich datasets giving high protein identification rates. Moreover, high reproducibility of HPLC allows highly sensitive and precise quantification. Therefore, over the recent decade, shotgun proteomics became the method of choice in the study of adaptive stress responses of plant proteome. Here we address the bottom-up shotgun proteomics strategy in plant biology and discuss its application to the study of plant stress response. We also discuss the main steps of the plant proteome analysis pipeline and address emerging problems and future perspectives.
Full Text

About the authors
Daria P. Gorbach
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
Email: daria.gorba4@yandex.ru
ORCID iD: 0000-0001-6836-5004
Russian Federation, Moscow
Tatiana S. Leonova
Leibniz Institute of Plant Biochemistry
Email: tatiana.leonova@ipb-halle.de
ORCID iD: 0000-0002-7153-5059
SPIN-code: 6132-3216
Germany, Halle (Saale)
Anastasia А. Orlova
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
Email: lanas_95@mail.ru
ORCID iD: 0000-0002-7836-5785
Cand. Sci. (Pharmacy)
Russian Federation, MoscowNadezhda V. Frolova
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
Email: frolovanadja@yandex.ru
ORCID iD: 0000-0002-1895-1133
SPIN-code: 1633-7805
Cand. Sci. (Biology)
Russian Federation, MoscowAnastasia K. Gurina
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science; Saint Petersburg State University
Email: gnastyak0@gmail.com
ORCID iD: 0009-0000-6514-1240
Russian Federation, Moscow; Saint Petersburg
Katerina V. Danko
Saint Petersburg State University
Email: danko_katerina@mail.ru
ORCID iD: 0000-0003-3987-2175
Russian Federation, Saint Petersburg
Elena M. Lukasheva
Saint Petersburg State University
Email: elena_lukasheva@mail.ru
ORCID iD: 0000-0002-0889-2395
SPIN-code: 6071-3591
Russian Federation, Saint Petersburg
Maria A. Cherevatskaya
Saint Petersburg State University
Email: maria.cherevatskaya@gmail.com
ORCID iD: 0000-0002-5604-3400
SPIN-code: 9395-1519
Cand. Sci. (Chemistry)
Russian Federation, Saint PetersburgElena V. Tsvetkova
Saint Petersburg State University
Email: evtsvetkova72@mail.ru
ORCID iD: 0000-0002-2022-615X
SPIN-code: 9221-5326
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAndrei A. Frolov
K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science
Author for correspondence.
Email: Andrej.Frolov@ipb-halle.de
ORCID iD: 0000-0003-3250-5858
SPIN-code: 5105-2490
Dr. Sci. (Biology)
Russian Federation, MoscowReferences
- Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324. doi: 10.1016/j.cell.2016.08.029
- Sehgal A, Sita K, Siddique KHM, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci. 2018;9:1705. doi: 10.3389/fpls.2018.01705
- Field TEB, Barros VR, Dokken DJ, et al. IPCC. 2014. Summary for policymakers. In climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: MacCracken S, Mastrandrea PR, editors. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. 2014.
- Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266–269. doi: 10.1126/science.aaz7614
- Ghatak A, Chaturvedi P, Weckwerth W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 2017;8:757. doi: 10.3389/fpls.2017.00757
- Kim K-H, Lee B-M. Effects of climate change and drought tolerance on maize growth. Plants. 2023;12(20):3548. doi: 10.3390/plants12203548
- McMillen MS, Mahama AA, Sibiya J, et al. Improving drought tolerance in maize: Tools and techniques. Front Genet. 2022;13:1001001. doi: 10.3389/fgene.2022.1001001
- Sahebi M, Hanafi MM, Rafii MY, et al. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. Biomed Res Int. 2018;2018:3158474. doi: 10.1155/2018/3158474
- Adel S, Carels N. Plant tolerance to drought stress with emphasis on wheat. Plants. 2023;12(11):2170. doi: 10.3390/plants12112170
- Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–462. doi: 10.1016/j.cub.2014.03.034
- Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19. doi: 10.1016/j.tplants.2016.08.002
- Shumilina J, Kiryushkin AS, Frolova N, et al. Integrative proteomics and metabolomics analysis reveals the role of small signaling peptide rapid alkalinization factor 34 (RALF34) in cucumber roots. Int J Mol Sci. 2023;24(8):7654. doi: 10.3390/ijms24087654
- Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021
- Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410. doi: 10.1016/S1360-1385(02)02312-9
- Leymarie J, Vitkauskaité G, Hoang HH, et al. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2012;53(1):96–106. doi: 10.1093/pcp/pcr129
- Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 2017;174(1):421–434. doi: 10.1104/pp.17.00030
- Liu J, Moyankova D, Lin C-T, et al. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC Plant Biol. 2018;18(1):351. doi: 10.1186/s12870-018-1566-0
- Mamontova T, Afonin AM, Ihling C, et al. Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules. 2019;24(8):1603. doi: 10.3390/molecules24081603
- Friso G, van Wijk KJ. Update: Post-translational protein modifications in plant metabolism. Plant Physiol. 2015;169(3):1469–1487. doi: 10.1104/pp.15.01378
- Smolikova G, Gorbach D, Lukasheva E, et al. Bringing new methods to the seed proteomics platform: challenges and perspectives. Int J Mol Sci. 2020;21(23):9162. doi: 10.3390/ijms21239162
- Michaletti A, Naghavi MR, Toorchi M, et al. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep. 2018;8(10):5710. doi: 10.1038/s41598-018-24012-y
- Balotf S, Wilson R, Tegg RS, et al. Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions. Proteomes. 2022;10(1):5. doi: 10.3390/proteomes10010005
- Aslam B, Basit M, Nisar MA, et al. Proteomics: Technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196. doi: 10.1093/chromsci/bmw167
- Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016
- Oracz K, El-Maarouf Bouteau H, Farrant JM, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50(3):452–465. doi: 10.1111/j.1365-313X.2007.03063.x
- Liebert MA, Pitzschke A, Forzani C, Hirt H. ROS signaling in plants. Antioxidants and Redox Signaling. 2006;8(9–10):1757. doi: 10.1089/ars.2006.8.1757
- Kuznetsova K, Efremova E, Dodueva I, et al. Functional modules in the meristems: ‘Tinkering’ in action. Plants. 2023;12(20):3661. doi: 10.3390/plants12203661
- Shal B, Ding W, Ali H, et al. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. 2018;9:548. doi: 10.3389/fphar.2018.00548
- Frolov A, Bilova T, Paudel G, et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. J Plant Physiol. 2017;208:70–83. doi: 10.1016/j.jplph.2016.09.013
- Ang MC-Y, Saju JM, Porter TK, et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun. 2024;15(1):2943. doi: 10.1038/s41467-024-47082-1
- Saxena I, Srikanth S, Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci. 2016;7:570. doi: 10.3389/fpls.2016.00570
- Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62(10):3321–3338. doi: 10.1093/jxb/err031
- Khan MIR, Fatma M, Per TS, et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015;6:462. doi: 10.3389/fpls.2015.00462
- Yuan S, Lin H-H. Role of salicylic acid in plant abiotic stress. Z Naturforsch C. 2008;63(5–6):313–320. doi: 10.1515/znc-2008-5-601
- Greifenhagen U, Frolov A, Blüher M, Hoffmann R. Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes. J Biol Chem. 2016;291(18):9610–9616. doi: 10.1074/jbc.M115.702860
- Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(S1):3–27. doi: 10.3109/10715762.2013.815348
- Shumilina J, Kusnetsova A, Tsarev A, et al. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? Int J Mol Sci. 2019;20(9):2366. doi: 10.3390/ijms20092366
- Kosová K, Vítámvás P, Urban MO, et al. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front Plant Sci. 2018;9:122. doi: 10.3389/fpls.2018.00122
- Cassier-Chauvat C, Marceau F, Farci S, et al. The glutathione system: A journey from cyanobacteria to higher eukaryotes. Antioxidants. 2023;12(6):1199. doi: 10.3390/antiox12061199
- Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43. doi: 10.1111/nph.12797
- Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells. 2019;9(1):105. doi: 10.3390/cells9010105
- Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol. 2022;64(2):301–341. doi: 10.1111/jipb.13215
- Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 2013;163(2):523–530. doi: 10.1104/pp.113.222539
- Godoy F, Olivos-Hernández K, Stange C, Handford M. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants. 2021;10(2):186. doi: 10.3390/plants10020186
- Atta AH, Mouneir SM. Antidiarrhoeal activity of some Egyptian medicinal plant extracts. J Ethnopharmacol. 2004;92(2–3):303–309. doi: 10.1016/j.jep.2004.03.017
- Shen N, Wang T, Gan Q, et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531
- Catarino MD, Silva AMS, Cardoso SM. Fucaceae: A source of bioactive phlorotannins. Int J Mol Sci. 2017;18(6):1327. doi: 10.3390/ijms18061327
- Liu L, Xu F-R, Wang Y-Z. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J Ethnopharmacol. 2020;263:112792. doi: 10.1016/j.jep.2020.112792
- Rosas-Saavedra C, Stange C. Biosynthesis of carotenoids in plants: Enzymes and color. In: Stange C, editor. Carotenoids in nature. Subcellular biochemistry. Vol. 79. Springer, Cham; 2016. P. 35–69. doi: 10.1007/978-3-319-39126-7_2
- Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–537. doi: 10.1126/science.286.5439.531
- Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1(2):203–209. doi: 10.1016/S1535-6108(02)00030-2
- Wang Y, Klijin J, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):671–679. doi: 10.1016/S0140-6736(05)70933-8
- Kodera C, Just J, Da Rocha M, et al. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics. 2021;22(1):268. doi: 10.1186/s12864-021-07503-7
- Fehér A. A common molecular signature indicates the pre-meristematic state of plant calli. Int J Mol Sci. 2023;24(17):13122. doi: 10.3390/ijms241713122
- Vajda V, Pucetaite M, McLoughlin S, et al. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nat Ecol Evol. 2017;1(8):1093–1099. doi: 10.1038/s41559-017-0224-5
- Kitashova A, Brodsky V, Chaturvedi P, et al. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. J Plant Physiol. 2023;290:154116. doi: 10.1016/j.jplph.2023.154116
- Ruan Y-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65(1):33–67. doi: 10.1146/annurev-arplant-050213-040251
- Alpert P, Simms EL. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol. 2002;16(3):285–297. doi: 10.1023/A:1019684612767
- Stotz GC, Salgado-Luarte C, Escobedo VM, et al. Global trends in phenotypic plasticity of plants. Ecol Lett. 2021;24(10):2267–2281. doi: 10.1111/ele.13827
- Scheepens JF, Deng Y, Bossdorf O. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AoB Plants. 2018;10(4):ply043. doi: 10.1093/aobpla/ply043
- Vanwallendael A, Soltani A, Emery NC, et al. A molecular view of plant local adaptation: incorporating stress-response networks. Annu Rev Plant Biol. 2019;70:559–583. doi: 10.1146/annurev-arplant-050718-100114
- Fercha A, Capriotti AL, Caruso G, et al. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics. 2014;108:238–257. doi: 10.1016/j.jprot.2014.04.040
- Makavitskaya M, Svistunenko D, Navaselsky I, et al. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels. J Exp Bot. 2018;69(14):3477–3489. doi: 10.1093/jxb/ery056
- The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D531. doi: 10.1093/nar/gkac1052
- Gough C, Sadanandom A. Understanding and exploiting post-translational modifications for plant disease resistance. Biomolecules. 2021;11(8):1122. doi: 10.3390/biom11081122
- Xin X, Lin X-H, Zhou Y-C, et al. Proteome analysis of maize seeds: the effect of artificial ageing. Physiol Plant. 2011;143(2): 126–138. doi: 10.1111/j.1399-3054.2011.01497.x
- Yin X, Wang X, Komatsu S. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sci. 2018;19(4):401–412. doi: 10.2174/1389203718666170209151048
- Sugiyama N, Nakagami H, Mochida K, et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol. 2008;4:193. doi: 10.1038/msb.2008.32
- Luan S. Protein phosphatases in plants. Annu Rev Plant Biol. 2003;54:63–92. doi: 10.1146/annurev.arplant.54.031902.134743
- Zhang WJ, Zhou Y, Zhang Y, et al. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep. 2023;42(7):112729. doi: 10.1016/j.celrep.2023.112729
- Doroodian P, Hua Z. The ubiquitin switch in plant stress response. Plants. 2021;10(2):246. doi: 10.3390/plants10020246
- Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol. 2010;154(4): 1983–1997. doi: 10.1104/pp.110.164749
- Liu Y-C, Wu Y-R, Huang X-H, et al. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant. 2011;4(6):938–946. doi: 10.1093/mp/ssr030
- Seo DH, Ryu MY, Jammes F, et al. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol. 2012;160(1):556–568. doi: 10.1104/pp.112.202143
- Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells. 2022;11(5):890. doi: 10.3390/cells11050890
- Singh M, Singh A, Yadav N, Yadav DK. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants. Front Plant Sci. 2022;13:993194. doi: 10.3389/fpls.2022.993194
- Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci. 2021;78(6):2641–2664. doi: 10.1007/s00018-020-03723-4
- Fang S, Hou X, Liang X. SIZ1-mediated SUMOylation responds to multiple abiotic stresses in plants. Environ Exp Bot. 2022;201:104977. doi: 10.1016/j.envexpbot.2022.104977
- Soboleva A, Schmidt R, Vikhnina M, et al. Maillard proteomics: opening new pages. Int J Mol Sci. 2017;18(12):2677. doi: 10.3390/ijms18122677
- Strasser R. Plant protein glycosylation. Glycobiology. 2016;26(9): 926–939. doi: 10.1093/glycob/cww023
- Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol. 2018;80:133–141. doi: 10.1016/j.semcdb.2017.07.005
- Frolova N, Soboleva A, Nguyen VD, et al. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chem. 2021;347:128951. doi: 10.1016/j.foodchem.2020.128951
- Soboleva A, Mavropulo-Stolyarenko G, Karonnova T, et al. Multiple glycation sites in blood plasma proteins as an integrated biomarker of type 2 diabetes mellitus. Int J Mol Sci. 2019;20(9):2329. doi: 10.3390/ijms20092329
- Bilova T, Paudel G, Shilyaev N, et al. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J Biol Chem. 2017;292(38):15758–15776. doi: 10.1074/jbc.M117.794537
- Soboleva A, Frolova N, Bureiko K, et al. Dynamics of reactive carbonyl species in pea root nodules in response to polyethylene glycol (PEG)-induced osmotic stress. Int J Mol Sci. 2022;23(5):2726. doi: 10.3390/ijms23052726
- Rabbani N, Al-Motawa M, Thornalley PJ. Protein glycation in plants — an under-researched field with much still to discover. Int J Mol Sci. 2020;21(11):3942. doi: 10.3390/ijms21113942
- Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot. 2020;71(17): 5179–5190. doi: 10.1093/jxb/eraa202
- Wakeel A, Ali I, Khan AR, et al. Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. Plant Cell Rep. 2018;37(1):51–59. doi: 10.1007/s00299-017-2205-1
- Wang J, Liu C, Chen Y, et al. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol. 2021;23(9): 4841–4855. doi: 10.1111/1462-2920.15725
- Cui X, Dard A, Reichheld J-P, Zhou D-X. Multifaceted functions of histone deacetylases in stress response. Trends Plant Sci. 2023;28(11):1245–1256. doi: 10.1016/j.tplants.2023.06.006
- Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 2008;146(1): 149–161. doi: 10.1104/pp.107.111674
- Liu X, Yang S, Zhao M, et al. Transcriptional repression by histone deacetylases in plants. Mol Plant. 2014;7(5):764–772. doi: 10.1093/mp/ssu033
- Tiwari M, Kumar R, Min D, Jagadish SVK. Genetic and molecular mechanisms underlying root architecture and function under heat stress — A hidden story. Plant Cell Environ. 2022;45(3):771–788. doi: 10.1111/pce.14266
- An C, Deng L, Zhai H, et al. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol Plant. 2022;15(8):1329–1346. doi: 10.1016/j.molp.2022.06.014
- Zheng Y, Ding Y, Sun X, et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot. 2016;67(6):1703–1713. doi: 10.1093/jxb/erv562
- Poulios S, Tsilimigka F, Mallioura A, et al. Histone acetyltransferase GCN5 affects auxin transport during root growth by modulating histone acetylation and gene expression of PINs. Plants. 2022;11(24):3572. doi: 10.3390/plants11243572
- de Rooij PGH, Perrella G, Kaiserli E, van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. J Exp Bot. 2020;71(20):6211–6225. doi: 10.1093/jxb/eraa335
- Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol. 2008;59:21–39. doi: 10.1146/annurev.arplant.59.032607.092830
- Graska J, Fidler J, Gietler M, et al. Nitric oxide in plant functioning: Metabolism, signaling, and responses to infestation with ecdysozoa parasites. Biology. 2023;12(7):927. doi: 10.3390/biology12070927
- Chaki M, Fernández-Ocaña AM, Valderrama R, et al. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 2009;50(2):265–279. doi: 10.1093/pcp/pcn196
- Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019;20(8):1163–1178. doi: 10.1111/mpp.12821
- Huang D, Hou J, Zhang J, et al. Protein S-nitrosylation in programmed cell death in plants. Cell Mol Life Sci. 2019;76(10): 1877–1887. doi: 10.1007/s00018-019-03045-0
- Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot. 2014;65(2):527–538. doi: 10.1093/jxb/ert396
- Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, et al. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. Front Plant Sci. 2022;13:1027730. doi: 10.3389/fpls.2022.1027730
- Boyd LA, Ridout C, O’Sullivan DM, et al. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 2013;29(4):233–240. doi: 10.1016/j.tig.2012.10.011
- Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci. 2013;4:519. doi: 10.3389/fpls.2013.00519
- Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytol. 2020;225(5):1852–1872. doi: 10.1111/nph.16340
- Fan K-T, Wang K-H, Chang W-H, et al. Application of data-independent acquisition approach to study the proteome change from early to later phases of tomato pathogenesis responses. Int J Mol Sci. 2019;20(4):863. doi: 10.3390/ijms20040863
- Scalabrin E, Radaelli M, Rizzato G, et al. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses. Anal Bioanal Chem. 2015;407(21):6357–6368. doi: 10.1007/s00216-015-8770-7
- Dodueva IE, Lebedeva MA, Kuznetsova KA, et al. Plant tumors: a hundred years of study. Planta. 2020;251(4):82. doi: 10.1007/s00425-020-03375-5
- Liu J, Moyankova D, Djilianov D, Deng X. Common and specific mechanisms of desiccation tolerance in two gesneriaceae resurrection plants. multiomics evidences. Front Plant Sci. 2019;10:1067. doi: 10.3389/fpls.2019.01067
- Xiao L, Yang G, Zhang L, et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. PNAS USA. 2015;112(18):5833–5837. doi: 10.1073/pnas.1505811112
- García-Fontana C, Vilchez JI, Manzanera M. Proteome comparison between natural desiccation-tolerant plants and drought-protected Caspicum annuum plants by Microbacterium sp. 3J1. Front Microbiol. 2020;11:1537. doi: 10.3389/fmicb.2020.01537
- Vidović M, Battisti I, Pantelic A, et al. Desiccation tolerance in Ramonda serbica Panc.: an integrative transcriptomic, proteomic, metabolite and photosynthetic study. Plants. 2022;11(9):1199. doi: 10.3390/plants11091199
- Chandra J, Keshavkant S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol Mol Biol Plant. 2018;24(1):75–87. doi: 10.1007/s12298-017-0487-y
- Pucker B, Schilbert HM. Genomics and transcriptomics advance in plant sciences. In: Singh SP, Upadhyay SK, Pandey A, Kumar S, editors. Molecular approaches in plant biology and environmental challenges. Singapore: Springer; 2019. P. 419–448. doi: 10.1007/978-981-15-0690-1_19
- Khodadadian A, Darzi S, Haghi-Daredeh S, et al. Genomics and transcriptomics: The powerful technologies in precision medicine. Int J Gen Med. 2020;13:627–640. doi: 10.2147/IJGM.S249970
- Frolov A, Mamontova T, Ihling C, et al. Mining seed proteome: from protein dynamics to modification profiles. Biol Commun. 2018;63(1):43–58. doi: 10.21638/spbu03.2018.106
- McDonald WH, Yates JR III. Shotgun proteomics and biomarker discovery. Dis Markers. 2002;18(2):99–105. doi: 10.1155/2002/505397
- Meena KK, Sorty AM, Bitla UM, et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci. 2017;8:172. doi: 10.3389/fpls.2017.00172
- Zander M, Lewsey MG, Clark NM, et al. Integrated multi-omics framework of the plant response to jasmonic acid. Nat Plant. 2020;6(3):290–302. doi: 10.1038/s41477-020-0605-7
- Halder A, Verma A, Biswas D, Srivastava S. Recent advances in mass-spectrometry based proteomics software, tools and databases. Drug Discov Today Technol. 2021;39:69–79. doi: 10.1016/j.ddtec.2021.06.007
- Meyer JG. Qualitative and quantitative shotgun proteomics data analysis from data-dependent acquisition mass spectrometry. In: Carrera M, Mateos J, editors. Shotgun proteomics. Methods in molecular biology. Vol. 2259. New York: Humana; 2021. P. 297–308. doi: 10.1007/978-1-0716-1178-4_19
- Yang Y, Saand MA, Huang L, et al. Applications of multi-omics technologies for crop improvement. Front Plant Sci. 2021;12:563953. doi: 10.3389/fpls.2021.563953
- Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem. 2016;9:449–472. doi: 10.1146/annurev-anchem-071015-041535
- Komatsu S, Wang X, Yin X, et al. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through soybean proteome database. J Proteom. 2017;163:52–66. doi: 10.1016/j.jprot.2017.05.009
- Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol Cell Proteom. 2012;11(6):O111.016717. doi: 10.1074/mcp.O111.016717
- Gilar M, Belenky A, Wang BH. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A. 2001;921(1):3–13. doi: 10.1016/S0021-9673(01)00833-0
- Spiller S, Frolov A, Hoffmann R. Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers. Protein Pept Lett. 2018;24(10):887–896. doi: 10.2174/0929866524666170202124120
- Makarov A, Denisov E, Lange O. Performance evaluation of a high-field Orbitrap mass analyzer. J Am Soc Mass Spectrom. 2009;20(8):1391–1396. doi: 10.1016/j.jasms.2009.01.005
- Swearingen KE, Moritz RL. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Expert Rev Proteom. 2012;9(5):505–517. doi: 10.1586/epr.12.50
- Thermo Fisher Scientific. Proteome discoverer. User guide. Software version 2.2. Thermo Fisher Scientific Inc; 2017.
- Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b. — range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511
- Cox J, Neuhauser N, Michalski A, et al. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteom Res. 2011;10(4):1794–1805. doi: 10.1021/pr101065j
- Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(20):2337–2342. doi: 10.1002/rcm.1196
- Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Mass Spectrom Rev. 2019;38(6):461–482. doi: 10.1002/mas.21595
- Xie F, Liu T, Qian W-J, et al. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–25449. doi: 10.1074/jbc.R110.199703
- Fernández-Costa C, Martínez-Bartolomé S, McClatchy DB, et al. Impact of the identification strategy on the reproducibility of the DDA and DIA results. J Proteome Res. 2020;19(8):3153–3161. doi: 10.1021/acs.jproteome.0c00153
- Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785–1793. doi: 10.1021/pr101060v
- Ruiz-Perez D, Guan H, Madhivanan P, et al. So you think you can PLS-DA? BMC Bioinform. 2020;21(1):2. doi: 10.1186/s12859-019-3310-7
- Valentim-Neto PA, Rossi GB, Anacleto KB, et al. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis. J Sci Food Agric. 2016;96(3):927–932. doi: 10.1002/jsfa.7166
- Azevedo MS, Valentim-Neto PA, Seraglio SKT, et al. Proteome comparison for discrimination between honeydew and floral honeys from botanical species Mimosa scabrella Bentham by principal component analysis. J Sci Food Agric. 2017;97(13):4515–4519. doi: 10.1002/jsfa.8317
- Yang J, Zheng N, Soyeurt H, et al. Detection of plant protein in adulterated milk using nontargeted nano-high-performance liquid chromatography-tandem mass spectroscopy combined with principal component analysis. Food Sci Nutr. 2019;7(1):56–64. doi: 10.1002/fsn3.791
- Jones EA, Deininger S-O, Hogendoorn PCW, et al. Imaging mass spectrometry statistical analysis. J Proteom. 2012;75(16):4962–4989. doi: 10.1016/j.jprot.2012.06.014
- Kong W, Hui HWH, Peng H, Bin Goh WW. Dealing with missing values in proteomics data. Proteomics. 2022;22(23–24):e2200092. doi: 10.1002/pmic.202200092
- Välikangas T, Suomi T, Elo LL. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform. 2018;19(1):1–11. doi: 10.1093/bib/bbw095
- Vilhena MB, Franco MR, Schmidt D, et al. Evaluation of protein extraction methods for enhanced proteomic analysis of tomato leaves and roots. An Acad Bras Cienc. 2015;87(3):1853–1863. doi: 10.1590/0001-3765201520150116
- Yadeta KA, Elmore JM, Coaker G. Advancements in the analysis of the Arabidopsis plasma membrane proteome. Front Plant Sci. 2013;4:86. doi: 10.3389/fpls.2013.00086
- Shishova MF, Yemelyanov VV. Proteome and lipidome of plant cell membranes during development. Russian Journal of Plant Physiology. 2021;68(5):800–817. doi: 10.1134/S1021443721050162
- Mamontova T, Lukasheva E, Mavropolo-Stolyarenko G, et al. Proteome map of pea (Pisum sativum L.) embryos containing different amounts of residual chlorophylls. Int J Mol Sci. 2018;19(12):4066. doi: 10.3390/ijms19124066
- Rogowska-Wrzesinska A, Le Bihan M-C, Thaysen-Andersen M, Roepstorff P. 2D gels still have a niche in proteomics. J Proteomics. 2013;88:4–13. doi: 10.1016/j.jprot.2013.01.010
- Jorrín-Novo JV, Pascual J, Sanchez-Lukas R, et al. Fourteen years of plant proteomics reflected in Proteomics: Moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics. 2015;15(5–6):1089–1112. doi: 10.1002/pmic.201400349
- Jorrin-Novo JV, Komatsu S, Sanchez-Lucas R, Rodríguez de Francisco LE. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteom. 2019;198:1–10. doi: 10.1016/j.jprot.2018.08.016
- Frolov A, Didio A, Ihling C, et al. The effect of simulated microgravity on the Brassica napus seedling proteome. Funct Plant Biol. 2018;45(4):440. doi: 10.1071/FP16378
- Tan BC, Lim YS, Lau S. Proteomics in commercial crops: An overview. J Proteom. 2017;169:176–188. doi: 10.1016/j.jprot.2017.05.018
- Le Gall H, Philippe F, Domon J-M, et al. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112–166. doi: 10.3390/plants4010112
- Barua P, Subba P, Lande NV, et al. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire. J Proteom. 2016;143:199–208. doi: 10.1016/j.jprot.2016.04.015
- Křeček P, Skupa P, Libus J, et al. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10(12):249. doi: 10.1186/gb-2009-10-12-249
- Lu C, Liu X, Tang Y, et al. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. Int J Biol Macromol. 2023;258–1:128880. doi: 10.1016/j.ijbiomac.2023.128880
- Drakakaki G, van de Ven W, Pan S, et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 2012;22(2):413–424. doi: 10.1038/cr.2011.129
- Verdú M, Gómez JM, Valiente-Banuet A, Schöb C. Facilitation and plant phenotypic evolution. Trends Plant Sci. 2021;26(9):913–923. doi: 10.1016/j.tplants.2021.04.005
- Russell JJ, Theriot JA, Sood P, et al. Non-model model organisms. BMC Biol. 2017;15(1):55. doi: 10.1186/s12915-017-0391-5
- Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. Arabidopsis bioinformatics: tools and strategies. Plant J. 2021;108(6):1585–1596. doi: 10.1111/tpj.15547
- Heck M, Neely BA. Proteomics in non-model organisms: A new analytical frontier. J Proteom Res. 2020;19(9):3595–3606. doi: 10.1021/acs.jproteome.0c00448
- Romero-Rodríguez MC, Jorrín-Novo JV, Castillejo MA. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. J Proteom. 2019;197:60–70. doi: 10.1016/j.jprot.2018.11.003
- Larrainzar E, Wienkoop S, Weckwerth W, et al. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol. 2007;144(3):1495–1507. doi: 10.1104/pp.107.101618
- Bahmani M, Juhasz A, Broadbent J, et al. Proteome phenotypes discriminate the growing location and malting traits in field-grown barley. J Agric Food Chem. 2022;70(34):10680–10691. doi: 10.1021/acs.jafc.2c03816
- Yan S, Bhawal R, Yin Z, et al. Recent advances in proteomics and metabolomics in plants. Mol Hortic. 2022;2(1):17. doi: 10.1186/s43897-022-00038-9
- McDermaid A, Monier B, Zhao J, et al. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform. 2019;20(6):2044–2054. doi: 10.1093/bib/bby067
- Razzaq MK, Aleem M, Mansoor S, et al. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292. doi: 10.3390/ijms22031292
- Bourgeois DL, Kreeger PK. Partial least squares regression models for the analysis of kinase signaling. In: Tan AC, Huang P, editors. Kinase signaling networks. Methods in molecular biology. Vol. 1636. New York: Humana Press; 2017. P. 523–533. doi: 10.1007/978-1-4939-7154-1_32
- Hesami M, Alizadeh M, Jones AMP, Torkamaneh D. Machine learning: its challenges and opportunities in plant system biology. Appl Microbiol Biotechnol. 2022;106(9–10):3507–3530. doi: 10.1007/s00253-022-11963-6
- Wang P, Schumacher AM, Shiu S-H. Computational prediction of plant metabolic pathways. Curr Opin Plant Biol. 2022;66:102171. doi: 10.1016/j.pbi.2021.102171
- Chen L. Bioinformatics analysis of protein secretion in plants. In: Jiang L, editor. Plant protein secretion. Methods in molecular biology. Vol. 1662. New York: Humana Press; 2017. P. 33–43. doi: 10.1007/978-1-4939-7262-3_3
- Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462. doi: 10.1093/nar/gkv1070
- Milacic M, Beavers D, Conley P, et al. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024;52(D1):D672–D678. doi: 10.1093/nar/gkad1025
- Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556
- Usadel B, Poree F, Nagel A, et al. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ. 2009;32(9):1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x
- Lohse M, Nagel A, Herter T, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014;37(5):1250–1258. doi: 10.1111/pce.12231
- Schwacke R, Ponce-Soto GY, Krause K, et al. MapMan4: A refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12(6):879–892. doi: 10.1016/j.molp.2019.01.003
- Hayashi T, Matsuzaki Y, Yanagisawa K, et al. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions. BMC Bioinform. 2018;19(S4):62. doi: 10.1186/s12859-018-2073-x
- Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi: 10.1093/nar/gkac1000
- Danko K, Lukasheva E, Zhukov VA, et al. Detergent-assisted protein digestion-on the way to avoid the key bottleneck of shotgun bottom-up proteomics. Int J Mol Sci. 2022;23(22):13903. doi: 10.3390/ijms232213903
- Leonova T, Ihling C, Saoud M, et al. Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? Front Plant Sci. 2022;13:874761. doi: 10.3389/fpls.2022.874761
- Petersen J, Rogowska-Wrzesinska A, Jensen ON. Functional proteomics of barley and barley chloroplasts — strategies, methods and perspectives. Front Plant Sci. 2013;4:52. doi: 10.3389/fpls.2013.00052
- Sun B, Liu Z, Liu J, et al. The utility of proteases in proteomics, from sequence profiling to structure and function analysis. Proteomics. 2023;23(6):e2200132. doi: 10.1002/pmic.202200132
- Obudulu O, Bygdell J, Sundberg B, et al. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genom. 2016;7(1):119. doi: 10.1186/s12864-016-2458-z
- Klčová B, Balarynova J, Trneny O, et al. Domestication has altered gene expression and secondary metabolites in pea seed coat. Plant J. 2024;118(6):2269–2295. doi: 10.1111/tpj.16734
- Galland M, He D, Lounifi I, et al. An integrated ‘multi-omics’ comparison of embryo and endosperm tissue-specific features and their impact on rice seed quality. Front Plant Sci. 2017;8:1984. doi: 10.3389/fpls.2017.01984
- Crandall SG, Gold KM, Jiménez-Gasco MDM, et al. A multi-omics approach to solving problems in plant disease ecology. PLoS One. 2020;15(9):e0237975–e0237975. doi: 10.1371/journal.pone.0237975
Supplementary files
