Скорострельная протеомика в изучении адаптивных реакций растений на стресс
- Авторы: Горбач Д.П.1, Леонова Т.С.2, Орлова А.А.1, Фролова Н.В.1, Гурина А.К.1,3, Данько К.В.3, Лукашева Е.М.3, Черевацкая М.А.3, Цветкова Е.В.3, Фролов А.А.1
-
Учреждения:
- Институт физиологии растений им. К.А. Тимирязева
- Институт биохимии растений им. Лейбница
- Санкт-Петербургский государственный университет
- Выпуск: Том 23, № 1 (2025)
- Страницы: 39-63
- Раздел: Методология экологической генетики
- Статья получена: 09.12.2024
- Статья одобрена: 16.12.2024
- Статья опубликована: 19.04.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/642716
- DOI: https://doi.org/10.17816/ecogen642716
- ID: 642716
Цитировать
Полный текст



Аннотация
В связи со стремительным изменением климата засуха, экстремально высокие температуры и засоление почв стали заметными экологическими стрессорами, которые на данный момент встречаются в большинстве наземных экосистем. В связи с исключительным влиянием этих факторов на сельское хозяйство, биохимия и молекулярная биология стрессовых реакций растений последние несколько десятилетий остается в центре исследовательского интереса во всем мире. Так, протеомика «снизу-вверх» стала универсальным инструментом исследования растений в целом и биологии клеточного стресса в частности. Растения считаются сложным объектом для исследования: их клетки богаты полисахаридами, полифенолами и труднорастворимыми в воде белками, поэтому их протеом обычно анализируют с помощью электрофоретических методов. Однако последние достижения в области методов пробоподготовки (в первую очередь, солюбилизации и переваривания белков) позволили создать «безгелевые» методы для образцов растительного происхождения. Внедрение высокопроизводительной нанопоточной обратно-фазовой высокоэффективной жидкостной хроматографии, соединенной с масс-спектрометрией с ионизацией электрораспылением (nanoRP-HPLC-ESI-MS), обеспечило доступ к массивам данных с высокой скоростью идентификации белков. Кроме того, высокая воспроизводимость высокоэффективной жидкостной хроматографии позволяет проводить высокочувствительное и точное количественное определение. Поэтому в последнее десятилетие дробовая протеомика стала методом выбора при изучении адаптивных стрессовых реакций протеома растений. В данном обзоре рассматриваются стратегии шотган-протеомики «снизу-вверх» в биологии растений и обсуждается ее применение для изучения стрессовых реакций растений. В статье также обсуждаются основные этапы анализа протеома растений, возникающие проблемы и перспективы.
Полный текст

Об авторах
Дарья Петровна Горбач
Институт физиологии растений им. К.А. Тимирязева
Email: daria.gorba4@yandex.ru
ORCID iD: 0000-0001-6836-5004
Россия, Москва
Татьяна Сергеевна Леонова
Институт биохимии растений им. Лейбница
Email: tatiana.leonova@ipb-halle.de
ORCID iD: 0000-0002-7153-5059
SPIN-код: 6132-3216
Германия, Галле (Заале)
Анастасия Андреевна Орлова
Институт физиологии растений им. К.А. Тимирязева
Email: lanas_95@mail.ru
ORCID iD: 0000-0002-7836-5785
канд. фарм. наук
Россия, МоскваНадежда Владимировна Фролова
Институт физиологии растений им. К.А. Тимирязева
Email: frolovanadja@yandex.ru
ORCID iD: 0000-0002-1895-1133
SPIN-код: 1633-7805
канд. биол. наук
Россия, МоскваАнастасия Кирилловна Гурина
Институт физиологии растений им. К.А. Тимирязева; Санкт-Петербургский государственный университет
Email: gnastyak0@gmail.com
ORCID iD: 0009-0000-6514-1240
Россия, Москва; Санкт-Петербург
Катерина Владимировна Данько
Санкт-Петербургский государственный университет
Email: danko_katerina@mail.ru
ORCID iD: 0000-0003-3987-2175
Россия, Санкт-Петербург
Елена Михайловна Лукашева
Санкт-Петербургский государственный университет
Email: elena_lukasheva@mail.ru
ORCID iD: 0000-0002-0889-2395
SPIN-код: 6071-3591
Россия, Санкт-Петербург
Мария Александровна Черевацкая
Санкт-Петербургский государственный университет
Email: maria.cherevatskaya@gmail.com
ORCID iD: 0000-0002-5604-3400
SPIN-код: 9395-1519
канд. хим. наук
Россия, Санкт-ПетербургЕлена Викторовна Цветкова
Санкт-Петербургский государственный университет
Email: evtsvetkova72@mail.ru
ORCID iD: 0000-0002-2022-615X
SPIN-код: 9221-5326
канд. биол. наук
Россия, Санкт-ПетербургАндрей Александрович Фролов
Институт физиологии растений им. К.А. Тимирязева
Автор, ответственный за переписку.
Email: Andrej.Frolov@ipb-halle.de
ORCID iD: 0000-0003-3250-5858
SPIN-код: 5105-2490
д-р биол. наук
Россия, МоскваСписок литературы
- Zhu J.-K. Abiotic stress signaling and responses in plants // Cell. 2016. Vol. 167, N 2. P. 313–324. doi: 10.1016/j.cell.2016.08.029
- Sehgal A., Sita K., Siddique K.H.M., et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality // Front Plant Sci. 2018. Vol. 9. ID 1705. doi: 10.3389/fpls.2018.01705
- Field T.E.B., Barros V.R., Dokken D.J., et al. IPCC. 2014. Summary for policymakers. In climate change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. В кн.: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change / S. MacCracken, P.R. Mastrandrea, editors. 2014.
- Gupta A., Rico-Medina A., Caño-Delgado A.I. The physiology of plant responses to drought // Science. 2020. Vol. 368, N 6488. P. 266–269. doi: 10.1126/science.aaz7614
- Ghatak A., Chaturvedi P., Weckwerth W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding // Front Plant Sci. 2017. Vol. 8. ID 757. doi: 10.3389/fpls.2017.00757
- Kim K.-H., Lee B.-M. Effects of climate change and drought tolerance on maize growth // Plants. 2023. Vol. 12, N 20. ID 3548. doi: 10.3390/plants12203548
- McMillen M.S., Mahama A.A., Sibiya J., et al. Improving drought tolerance in maize: Tools and techniques // Front Genet. 2022. Vol. 13. ID 1001001. doi: 10.3389/fgene.2022.1001001
- Sahebi M., Hanafi M.M., Rafii M.Y., et al. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family // Biomed Res Int. 2018. Vol. 2018. ID 3158474. doi: 10.1155/2018/3158474
- Adel S., Carels N. Plant tolerance to drought stress with emphasis on wheat // Plants. 2023. Vol. 12, N 11. ID 2170. doi: 10.3390/plants12112170
- Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress // Curr Biol. 2014. Vol. 24, N 10. P. R453–462. doi: 10.1016/j.cub.2014.03.034
- Mittler R. ROS are good // Trends Plant Sci. 2017. Vol. 22, N 1. P. 11–19. doi: 10.1016/j.tplants.2016.08.002
- Shumilina J., Kiryushkin A.S., Frolova N., et al. Integrative proteomics and metabolomics analysis reveals the role of small signaling peptide rapid alkalinization factor 34 (RALF34) in cucumber roots // Int J Mol Sci. 2023. Vol. 24, N 8. ID 7654. doi: 10.3390/ijms24087654
- Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology // Environ Exp Bot. 2015. Vol. 109. P. 212–228. doi: 10.1016/j.envexpbot.2014.06.021
- Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends Plant Sci. 2002. Vol. 7, N 9. P. 405–410. doi: 10.1016/S1360-1385(02)02312-9
- Leymarie J., Vitkauskaité G., Hoang H.H., et al. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy // Plant Cell Physiol. 2012. Vol. 53, N 1. P. 96–106. doi: 10.1093/pcp/pcr129
- Shaar-Moshe L., Blumwald E., Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat // Plant Physiol. 2017. Vol. 174, N 1. P. 421–434. doi: 10.1104/pp.17.00030
- Liu J., Moyankova D., Lin C.-T., et al. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis // BMC Plant Biol. 2018. Vol. 18, N 1. ID 351. doi: 10.1186/s12870-018-1566-0
- Mamontova T., Afonin A.M., Ihling C., et al. Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi // Molecules. 2019. Vol. 24, N 8. ID 1603. doi: 10.3390/molecules24081603
- Friso G., van Wijk K.J. Update: Post-translational protein modifications in plant metabolism // Plant Physiol. 2015. Vol. 169, N 3. P. 1469–1487. doi: 10.1104/pp.15.01378
- Smolikova G., Gorbach D., Lukasheva E., et al. Bringing new methods to the seed proteomics platform: challenges and perspectives // Int J Mol Sci. 2020. Vol. 21, N 23. ID 9162. doi: 10.3390/ijms21239162
- Michaletti A., Naghavi M.R., Toorchi M., et al. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat // Sci Rep. 2018. Vol. 8, N 10. ID 5710. doi: 10.1038/s41598-018-24012-y
- Balotf S., Wilson R., Tegg R.S., et al. Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions // Proteomes. 2022. Vol. 10, N 1. ID 5. doi: 10.3390/proteomes10010005
- Aslam B., Basit M., Nisar M.A., et al. Proteomics: Technologies and their applications // J Chromatogr Sci. 2017. Vol. 55, N 2. P. 182–196. doi: 10.1093/chromsci/bmw167
- Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol Biochem. 2010. Vol. 48, N 12. P. 909–930. doi: 10.1016/j.plaphy.2010.08.016
- Oracz K., El-Maarouf Bouteau H., Farrant J.M., et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation // Plant J. 2007. Vol. 50, N 3. P. 452–465. doi: 10.1111/j.1365-313X.2007.03063.x
- Liebert M.A., Pitzschke A., Forzani C., Hirt H. ROS signaling in plants // Antioxidants and Redox Signaling. 2006. Vol. 8, N 9–10. ID 1757. doi: 10.1089/ars.2006.8.1757
- Kuznetsova K., Efremova E., Dodueva I., et al. Functional modules in the meristems: ‘Tinkering’ in action // Plants. 2023. Vol. 12, N 20. ID 3661. doi: 10.3390/plants12203661
- Shal B., Ding W., Ali H., et al. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease // Front Pharmacol. 2018. Vol. 9. ID 548. doi: 10.3389/fphar.2018.00548
- Frolov A., Bilova T., Paudel G., et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model // J Plant Physiol. 2017. Vol. 208. P. 70–83. doi: 10.1016/j.jplph.2016.09.013
- Ang M.C.-Y., Saju J.M., Porter T.K., et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing // Nat Commun. 2024. Vol. 15, N 1. ID 2943. doi: 10.1038/s41467-024-47082-1
- Saxena I., Srikanth S., Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response // Front Plant Sci. 2016. Vol. 7. ID 570. doi: 10.3389/fpls.2016.00570
- Rivas-San Vicente M., Plasencia J. Salicylic acid beyond defence: its role in plant growth and development // J Exp Bot. 2011. Vol. 62, N 10. P. 3321–3338. doi: 10.1093/jxb/err031
- Khan M.I.R., Fatma M., Per T.S., et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants // Front Plant Sci. 2015. Vol. 6. ID 462. doi: 10.3389/fpls.2015.00462
- Yuan S., Lin H.-H. Role of salicylic acid in plant abiotic stress // Z Naturforsch C. 2008. Vol. 63, N 5–6. P. 313–320. doi: 10.1515/znc-2008-5-601
- Greifenhagen U., Frolov A., Blüher M., Hoffmann R. Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes // J Biol Chem. 2016. Vol. 291, N 18. P. 9610–9616. doi: 10.1074/jbc.M115.702860
- Vistoli G., De Maddis D., Cipak A., et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation // Free Radic Res. 2013. Vol. 47, N S1. P. 3–27. doi: 10.3109/10715762.2013.815348
- Shumilina J., Kusnetsova A., Tsarev A., et al. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? // Int J Mol Sci. 2019. Vol. 20, N 9. ID 2366. doi: 10.3390/ijms20092366
- Kosová K., Vítámvás P., Urban M.O., et al. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome // Front Plant Sci. 2018. Vol. 9. ID 122. doi: 10.3389/fpls.2018.00122
- Cassier-Chauvat C., Marceau F., Farci S., et al. The glutathione system: A journey from cyanobacteria to higher eukaryotes // Antioxidants. 2023. Vol. 12, N 6. ID 1199. doi: 10.3390/antiox12061199
- Suzuki N., Rivero R.M., Shulaev V., et al. Abiotic and biotic stress combinations // New Phytol. 2014. Vol. 203, N 1. P. 32–43. doi: 10.1111/nph.12797
- Mahmood T., Khalid S., Abdullah M., et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance // Cells. 2019. Vol. 9, N 1. ID 105. doi: 10.3390/cells9010105
- Zhang M., Zhang S. Mitogen-activated protein kinase cascades in plant signaling // J Integr Plant Biol. 2022. Vol. 64, N 2. P. 301–341. doi: 10.1111/jipb.13215
- Schulz P., Herde M., Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development // Plant Physiol. 2013. Vol. 163, N 2. P. 523–530. doi: 10.1104/pp.113.222539
- Godoy F., Olivos-Hernández K., Stange C., Handford M. Abiotic stress in crop species: improving tolerance by applying plant metabolites // Plants. 2021. Vol. 10, N 2. ID 186. doi: 10.3390/plants10020186
- Atta A.H., Mouneir S.M. Antidiarrhoeal activity of some Egyptian medicinal plant extracts // J Ethnopharmacol. 2004. Vol. 92, N 2–3. P. 303–309. doi: 10.1016/j.jep.2004.03.017
- Shen N., Wang T., Gan Q., et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity // Food Chem. 2022. Vol. 383. ID 132531. doi: 10.1016/j.foodchem.2022.132531
- Catarino M.D., Silva A.M.S., Cardoso S.M. Fucaceae: A source of bioactive phlorotannins // Int J Mol Sci. 2017. Vol. 18, N 6. ID 1327. doi: 10.3390/ijms18061327
- Liu L., Xu F.-R., Wang Y.-Z. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review // J Ethnopharmacol. 2020. Vol. 263. ID 112792. doi: 10.1016/j.jep.2020.112792
- Rosas-Saavedra C., Stange C. Biosynthesis of carotenoids in plants: Enzymes and color. В кн.: Carotenoids in nature. Subcellular biochemistry. Vol. 79 / C. Stange, editor. Springer, Cham, 2016. P. 35–69. doi: 10.1007/978-3-319-39126-7_2
- Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring // Science. 1999. Vol. 286, N 5439. P. 531–537. doi: 10.1126/science.286.5439.531
- Singh D., Febbo P.G., Ross K., et al. Gene expression correlates of clinical prostate cancer behavior // Cancer Cell. 2002. Vol. 1, N 2. P. 203–209. doi: 10.1016/S1535-6108(02)00030-2
- Wang Y., Klijin J., Zhang Y., et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer // Lancet. 2005. Vol. 365, N 9460. P. 671–679. doi: 10.1016/S0140-6736(05)70933-8
- Kodera C., Just J., Da Rocha M., et al. The molecular signatures of compatible and incompatible pollination in Arabidopsis // BMC Genomics. 2021. Vol. 22, N 1. ID 268. doi: 10.1186/s12864-021-07503-7
- Fehér A. A common molecular signature indicates the pre-meristematic state of plant calli // Int J Mol Sci. 2023. Vol. 24, N 17. ID 13122. doi: 10.3390/ijms241713122
- Vajda V., Pucetaite M., McLoughlin S., et al. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships // Nat Ecol Evol. 2017. Vol. 1, N 8. P. 1093–1099. doi: 10.1038/s41559-017-0224-5
- Kitashova A., Brodsky V., Chaturvedi P., et al. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation // J Plant Physiol. 2023. Vol. 290. ID 154116. doi: 10.1016/j.jplph.2023.154116
- Ruan Y.-L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling // Annu Rev Plant Biol. 2014. Vol. 65, N 1. P. 33–67. doi: 10.1146/annurev-arplant-050213-040251
- Alpert P., Simms E.L. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? // Evol Ecol. 2002. Vol. 16, N 3. P. 285–297. doi: 10.1023/A:1019684612767
- Stotz G.C., Salgado-Luarte C., Escobedo V.M., et al. Global trends in phenotypic plasticity of plants // Ecol Lett. 2021. Vol. 24, N 10. P. 2267–2281. doi: 10.1111/ele.13827
- Scheepens J.F., Deng Y., Bossdorf O. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana // AoB Plants. 2018. Vol. 10, N 4. ID ply043. doi: 10.1093/aobpla/ply043
- Vanwallendael A., Soltani A., Emery N.C., et al. A molecular view of plant local adaptation: incorporating stress-response networks // Annu Rev Plant Biol. 2019. Vol. 70. P. 559–583. doi: 10.1146/annurev-arplant-050718-100114
- Fercha A., Capriotti A.L., Caruso G., et al. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress // J Proteomics. 2014. Vol. 108. P. 238–257. doi: 10.1016/j.jprot.2014.04.040
- Makavitskaya M., Svistunenko D., Navaselsky I., et al. Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels // J Exp Bot. 2018. Vol. 69, N 14. P. 3477–3489. doi: 10.1093/jxb/ery056
- The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023 // Nucleic Acids Res. 2023. Vol. 51, N D1. P. D523–D531. doi: 10.1093/nar/gkac1052
- Gough C., Sadanandom A. Understanding and exploiting post-translational modifications for plant disease resistance // Biomolecules. 2021. Vol. 11, N 8. ID 1122. doi: 10.3390/biom11081122
- Xin X., Lin X.-H., Zhou Y.-C., et al. Proteome analysis of maize seeds: the effect of artificial ageing // Physiol Plant. 2011. Vol. 143, N 2. P. 126–138. doi: 10.1111/j.1399-3054.2011.01497.x
- Yin X., Wang X., Komatsu S. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth // Curr Protein Pept Sci. 2018. Vol. 19, N 4. P. 401–412. doi: 10.2174/1389203718666170209151048
- Sugiyama N., Nakagami H., Mochida K., et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis // Mol Syst Biol. 2008. Vol. 4. ID 193. doi: 10.1038/msb.2008.32
- Luan S. Protein phosphatases in plants // Annu Rev Plant Biol. 2003. Vol. 54. P. 63–92. doi: 10.1146/annurev.arplant.54.031902.134743
- Zhang W.J., Zhou Y., Zhang Y., et al. Protein phosphorylation: A molecular switch in plant signaling // Cell Rep. 2023. Vol. 42, N 7. ID 112729. doi: 10.1016/j.celrep.2023.112729
- Doroodian P., Hua Z. The ubiquitin switch in plant stress response // Plants. 2021. Vol. 10, N 2. ID 246. doi: 10.3390/plants10020246
- Ryu M.Y., Cho S.K., Kim W.T. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress // Plant Physiol. 2010. Vol. 154, N 4. P. 1983–1997. doi: 10.1104/pp.110.164749
- Liu Y.-C., Wu Y.-R., Huang X.-H., et al. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana // Mol Plant. 2011. Vol. 4, N 6. P. 938–946. doi: 10.1093/mp/ssr030
- Seo D.H., Ryu M.Y., Jammes F., et al. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses // Plant Physiol. 2012. Vol. 160, N 1. P. 556–568. doi: 10.1104/pp.112.202143
- Al-Saharin R., Hellmann H., Mooney S. Plant E3 ligases and their role in abiotic stress response // Cells. 2022. Vol. 11, N 5. ID 890. doi: 10.3390/cells11050890
- Singh M., Singh A., Yadav N., Yadav D.K. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants // Front Plant Sci. 2022. Vol. 13. ID 993194. doi: 10.3389/fpls.2022.993194
- Roy D., Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants // Cell Mol Life Sci. 2021. Vol. 78, N 6. P. 2641–2664. doi: 10.1007/s00018-020-03723-4
- Fang S., Hou X., Liang X. SIZ1-mediated SUMOylation responds to multiple abiotic stresses in plants // Environ Exp Bot. 2022. Vol. 201. ID 104977. doi: 10.1016/j.envexpbot.2022.104977
- Soboleva A., Schmidt R., Vikhnina M., et al. Maillard proteomics: opening new pages // Int J Mol Sci. 2017. Vol. 18, N 12. ID 2677. doi: 10.3390/ijms18122677
- Strasser R. Plant protein glycosylation // Glycobiology. 2016. Vol. 26, N 9. P. 926–939. doi: 10.1093/glycob/cww023
- Schoberer J., Strasser R. Plant glyco-biotechnology // Semin Cell Dev Biol. 2018. Vol. 80. P. 133–141. doi: 10.1016/j.semcdb.2017.07.005
- Frolova N., Soboleva A., Nguyen V.D., et al. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach // Food Chem. 2021. Vol. 347. ID 128951. doi: 10.1016/j.foodchem.2020.128951
- Soboleva A., Mavropulo-Stolyarenko G., Karonnova T., et al. Multiple glycation sites in blood plasma proteins as an integrated biomarker of type 2 diabetes mellitus // Int J Mol Sci. 2019. Vol. 20, N 9. ID 2329. doi: 10.3390/ijms20092329
- Bilova T., Paudel G., Shilyaev N., et al. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots // J Biol Chem. 2017. Vol. 292, N 38. P. 15758–15776. doi: 10.1074/jbc.M117.794537
- Soboleva A., Frolova N., Bureiko K., et al. Dynamics of reactive carbonyl species in pea root nodules in response to polyethylene glycol (PEG)-induced osmotic stress // Int J Mol Sci. 2022. Vol. 23, N 5. ID 2726. doi: 10.3390/ijms23052726
- Rabbani N., Al-Motawa M., Thornalley P.J. Protein glycation in plants — an under-researched field with much still to discover // Int J Mol Sci. 2020. Vol. 21, N 11. ID 3942. doi: 10.3390/ijms21113942
- Jiang J., Ding A.B., Liu F., Zhong X. Linking signaling pathways to histone acetylation dynamics in plants // J Exp Bot. 2020. Vol. 71, N 17. P. 5179–5190. doi: 10.1093/jxb/eraa202
- Wakeel A., Ali I., Khan A.R., et al. Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants // Plant Cell Rep. 2018. Vol. 37, N 1. P. 51–59. doi: 10.1007/s00299-017-2205-1
- Wang J., Liu C., Chen Y., et al. Protein acetylation and deacetylation in plant-pathogen interactions // Environ Microbiol. 2021. Vol. 23, N 9. P. 4841–4855. doi: 10.1111/1462-2920.15725
- Cui X., Dard A., Reichheld J.-P., Zhou D.-X. Multifaceted functions of histone deacetylases in stress response // Trends Plant Sci. 2023. Vol. 28, N 11. P. 1245–1256. doi: 10.1016/j.tplants.2023.06.006
- Tanaka M., Kikuchi A., Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination // Plant Physiol. 2008. Vol. 146, N 1. P. 149–161. doi: 10.1104/pp.107.111674
- Liu X., Yang S., Zhao M., et al. Transcriptional repression by histone deacetylases in plants // Mol Plant. 2014. Vol. 7, N 5. P. 764–772. doi: 10.1093/mp/ssu033
- Tiwari M., Kumar R., Min D., Jagadish S.V.K. Genetic and molecular mechanisms underlying root architecture and function under heat stress — A hidden story // Plant Cell Environ. 2022. Vol. 45, N 3. P. 771–788. doi: 10.1111/pce.14266
- An C., Deng L., Zhai H., et al. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis // Mol Plant. 2022. Vol. 15, N 8. P. 1329–1346. doi: 10.1016/j.molp.2022.06.014
- Zheng Y., Ding Y., Sun X., et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis // J Exp Bot. 2016. Vol. 67, N 6. P. 1703–1713. doi: 10.1093/jxb/erv562
- Poulios S., Tsilimigka F., Mallioura A., et al. Histone acetyltransferase GCN5 affects auxin transport during root growth by modulating histone acetylation and gene expression of PINs // Plants. 2022. Vol. 11, N 24. ID 3572. doi: 10.3390/plants11243572
- de Rooij P.G.H., Perrella G., Kaiserli E., van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation // J Exp Bot. 2020. Vol. 71, N 20. P. 6211–6225. doi: 10.1093/jxb/eraa335
- Besson-Bard A., Pugin A., Wendehenne D. New insights into nitric oxide signaling in plants // Annu Rev Plant Biol. 2008. Vol. 59. P. 21–39. doi: 10.1146/annurev.arplant.59.032607.092830
- Graska J., Fidler J., Gietler M., et al. Nitric oxide in plant functioning: Metabolism, signaling, and responses to infestation with ecdysozoa parasites // Biology. 2023. Vol. 12, N 7. ID 927. doi: 10.3390/biology12070927
- Chaki M., Fernández-Ocaña A.M., Valderrama R., et al. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction // Plant Cell Physiol. 2009. Vol. 50, N 2. P. 265–279. doi: 10.1093/pcp/pcn196
- Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences // Mol Plant Pathol. 2019. Vol. 20, N 8. P. 1163–1178. doi: 10.1111/mpp.12821
- Huang D., Hou J., Zhang J., et al. Protein S-nitrosylation in programmed cell death in plants // Cell Mol Life Sci. 2019. Vol. 76, N 10. P. 1877–1887. doi: 10.1007/s00018-019-03045-0
- Begara-Morales J.C., Sánchez-Calvo B., Chaki M., et al. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation // J Exp Bot. 2014. Vol. 65, N 2. P. 527–538. doi: 10.1093/jxb/ert396
- Martí-Guillén J.M., Pardo-Hernández M., Martínez-Lorente S.E., et al. Redox post-translational modifications and their interplay in plant abiotic stress tolerance // Front Plant Sci. 2022. Vol. 13. ID 1027730. doi: 10.3389/fpls.2022.1027730
- Boyd L.A., Ridout C., O’Sullivan D.M., et al. Plant-pathogen interactions: disease resistance in modern agriculture // Trends Genet. 2013. Vol. 29, N 4. P. 233–240. doi: 10.1016/j.tig.2012.10.011
- Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread // Front Plant Sci. 2013. Vol. 4. ID 519. doi: 10.3389/fpls.2013.00519
- Harris M.O., Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes // New Phytol. 2020. Vol. 225, N 5. P. 1852–1872. doi: 10.1111/nph.16340
- Fan K.-T., Wang K.-H., Chang W.-H., et al. Application of data-independent acquisition approach to study the proteome change from early to later phases of tomato pathogenesis responses // Int J Mol Sci. 2019. Vol. 20, N 4. ID 863. doi: 10.3390/ijms20040863
- Scalabrin E., Radaelli M., Rizzato G., et al. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses // Anal Bioanal Chem. 2015. Vol. 407, N 21. P. 6357–6368. doi: 10.1007/s00216-015-8770-7
- Dodueva I.E., Lebedeva M.A., Kuznetsova K.A., et al. Plant tumors: a hundred years of study // Planta. 2020. Vol. 251, N 4. ID 82. doi: 10.1007/s00425-020-03375-5
- Liu J., Moyankova D., Djilianov D., Deng X. Common and specific mechanisms of desiccation tolerance in two gesneriaceae resurrection plants. multiomics evidences // Front Plant Sci. 2019. Vol. 10. ID 1067. doi: 10.3389/fpls.2019.01067
- Xiao L., Yang G., Zhang L., et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration // PNAS USA. 2015. Vol. 112, N 18. P. 5833–5837. doi: 10.1073/pnas.1505811112
- García-Fontana C., Vilchez J.I., Manzanera M. Proteome comparison between natural desiccation-tolerant plants and drought-protected Caspicum annuum plants by Microbacterium sp. 3J1 // Front Microbiol. 2020. Vol. 11. ID 1537. doi: 10.3389/fmicb.2020.01537
- Vidović M., Battisti I., Pantelic A., et al. Desiccation tolerance in Ramonda serbica Panc.: an integrative transcriptomic, proteomic, metabolite and photosynthetic study // Plants. 2022. Vol. 11, N 9. ID 1199. doi: 10.3390/plants11091199
- Chandra J., Keshavkant S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds // Physiol Mol Biol Plant. 2018. Vol. 24, N 1. P. 75–87. doi: 10.1007/s12298-017-0487-y
- Pucker B., Schilbert H.M. Genomics and transcriptomics advance in plant sciences. В кн.: Molecular approaches in plant biology and environmental challenges / S.P. Singh, S.K. Upadhyay, A. Pandey, S. Kumar, editors. Singapore: Springer, 2019. P. 419–448. doi: 10.1007/978-981-15-0690-1_19
- Khodadadian A., Darzi S., Haghi-Daredeh S., et al. Genomics and transcriptomics: The powerful technologies in precision medicine // Int J Gen Med. 2020. Vol. 13. P. 627–640. doi: 10.2147/IJGM.S249970
- Frolov A., Mamontova T., Ihling C., et al. Mining seed proteome: from protein dynamics to modification profiles // Biol Commun. 2018. Vol. 63, N 1. P. 43–58. doi: 10.21638/spbu03.2018.106
- McDonald W.H., Yates J.R. III. Shotgun proteomics and biomarker discovery // Dis Markers. 2002. Vol. 18, N 2. P. 99–105. doi: 10.1155/2002/505397
- Meena K.K., Sorty A.M., Bitla U.M., et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies // Front Plant Sci. 2017. Vol. 8. ID 172. doi: 10.3389/fpls.2017.00172
- Zander M., Lewsey M.G., Clark N.M., et al. Integrated multi-omics framework of the plant response to jasmonic acid // Nat Plant. 2020. Vol. 6, N 3. P. 290–302. doi: 10.1038/s41477-020-0605-7
- Halder A., Verma A., Biswas D., Srivastava S. Recent advances in mass-spectrometry based proteomics software, tools and databases // Drug Discov Today Technol. 2021. Vol. 39. P. 69–79. doi: 10.1016/j.ddtec.2021.06.007
- Meyer J.G. Qualitative and quantitative shotgun proteomics data analysis from data-dependent acquisition mass spectrometry. В кн.: Shotgun proteomics. Methods in molecular biology. Vol. 2259 / M. Carrera, J. Mateos, editors. New York: Humana, 2021. P. 297–308. doi: 10.1007/978-1-0716-1178-4_19
- Yang Y., Saand M.A., Huang L., et al. Applications of multi-omics technologies for crop improvement // Front Plant Sci. 2021. Vol. 12. ID 563953. doi: 10.3389/fpls.2021.563953
- Gillet L.C., Leitner A., Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing // Annu Rev Anal Chem. 2016. Vol. 9. P. 449–472. doi: 10.1146/annurev-anchem-071015-041535
- Komatsu S., Wang X., Yin X., et al. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through soybean proteome database // J Proteom. 2017. Vol. 163. P. 52–66. doi: 10.1016/j.jprot.2017.05.009
- Gillet L.C., Navarro P., Tate S., et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis // Mol Cell Proteom. 2012. Vol. 11, N 6. ID O111.016717. doi: 10.1074/mcp.O111.016717
- Gilar M., Belenky A., Wang B.H. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis // J Chromatogr A. 2001. Vol. 921, N 1. P. 3–13. doi: 10.1016/S0021-9673(01)00833-0
- Spiller S., Frolov A., Hoffmann R. Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers // Protein Pept Lett. 2018. Vol. 24, N 10. P. 887–896. doi: 10.2174/0929866524666170202124120
- Makarov A., Denisov E., Lange O. Performance evaluation of a high-field Orbitrap mass analyzer // J Am Soc Mass Spectrom. 2009. Vol. 20, N 8. P. 1391–1396. doi: 10.1016/j.jasms.2009.01.005
- Swearingen K.E., Moritz R.L. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics // Expert Rev Proteom. 2012. Vol. 9, N 5. P. 505–517. doi: 10.1586/epr.12.50
- Thermo Fisher Scientific. Proteome discoverer. User guide. Software version 2.2. Thermo Fisher Scientific Inc, 2017.
- Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b. — range mass accuracies and proteome-wide protein quantification // Nat Biotechnol. 2008. Vol. 26, N 12. P. 1367–1372. doi: 10.1038/nbt.1511
- Cox J., Neuhauser N., Michalski A., et al. Andromeda: A peptide search engine integrated into the MaxQuant environment // J Proteom Res. 2011. Vol. 10, N 4. P. 1794–1805. doi: 10.1021/pr101065j
- Ma B., Zhang K., Hendrie C., et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry // Rapid Commun Mass Spectrom. 2003. Vol. 17, N 20. P. 2337–2342. doi: 10.1002/rcm.1196
- Wang X., Shen S., Rasam S.S., Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts // Mass Spectrom Rev. 2019. Vol. 38, N 6. P. 461–482. doi: 10.1002/mas.21595
- Xie F., Liu T., Qian W.-J., et al. Liquid chromatography-mass spectrometry-based quantitative proteomics // J Biol Chem. 2011. Vol. 286, N 29. P. 25443–25449. doi: 10.1074/jbc.R110.199703
- Fernández-Costa C., Martínez-Bartolomé S., McClatchy D.B., et al. Impact of the identification strategy on the reproducibility of the DDA and DIA results // J Proteome Res. 2020. Vol. 19, N 8. P. 3153–3161. doi: 10.1021/acs.jproteome.0c00153
- Michalski A., Cox J., Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS // J Proteome Res. 2011. Vol. 10, N 4. P. 1785–1793. doi: 10.1021/pr101060v
- Ruiz-Perez D., Guan H., Madhivanan P., et al. So you think you can PLS-DA? // BMC Bioinform. 2020. Vol. 21, N 1. ID 2. doi: 10.1186/s12859-019-3310-7
- Valentim-Neto P.A., Rossi G.B., Anacleto K.B., et al. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis // J Sci Food Agric. 2016. Vol. 96, N 3. P. 927–932. doi: 10.1002/jsfa.7166
- Azevedo M.S., Valentim-Neto P.A., Seraglio S.K.T., et al. Proteome comparison for discrimination between honeydew and floral honeys from botanical species Mimosa scabrella Bentham by principal component analysis // J Sci Food Agric. 2017. Vol. 97, N 13. P. 4515–4519. doi: 10.1002/jsfa.8317
- Yang J., Zheng N., Soyeurt H., et al. Detection of plant protein in adulterated milk using nontargeted nano-high-performance liquid chromatography-tandem mass spectroscopy combined with principal component analysis // Food Sci Nutr. 2019. Vol. 7, N 1. P. 56–64. doi: 10.1002/fsn3.791
- Jones E.A., Deininger S.-O., Hogendoorn P.C.W., et al. Imaging mass spectrometry statistical analysis // J Proteom. 2012. Vol. 75, N 16. P. 4962–4989. doi: 10.1016/j.jprot.2012.06.014
- Kong W., Hui H.W.H., Peng H., Bin Goh W.W. Dealing with missing values in proteomics data // Proteomics. 2022. Vol. 22, N 23–24. ID e2200092. doi: 10.1002/pmic.202200092
- Välikangas T., Suomi T., Elo L.L. A systematic evaluation of normalization methods in quantitative label-free proteomics // Brief Bioinform. 2018. Vol. 19, N 1. P. 1–11. doi: 10.1093/bib/bbw095
- Vilhena M.B., Franco M.R., Schmidt D., et al. Evaluation of protein extraction methods for enhanced proteomic analysis of tomato leaves and roots // An Acad Bras Cienc. 2015. Vol. 87, N 3. P. 1853–1863. doi: 10.1590/0001-3765201520150116
- Yadeta K.A., Elmore J.M., Coaker G. Advancements in the analysis of the Arabidopsis plasma membrane proteome // Front Plant Sci. 2013. Vol. 4. ID 86. doi: 10.3389/fpls.2013.00086
- Shishova M.F., Yemelyanov V.V. Proteome and lipidome of plant cell membranes during development // Russian Journal of Plant Physiology. 2021. Vol. 68, N 5. P. 800–817. doi: 10.1134/S1021443721050162
- Mamontova T., Lukasheva E., Mavropolo-Stolyarenko G., et al. Proteome map of pea (Pisum sativum L.) embryos containing different amounts of residual chlorophylls // Int J Mol Sci. 2018. Vol. 19, N 12. ID 4066. doi: 10.3390/ijms19124066
- Rogowska-Wrzesinska A., Le Bihan M.-C., Thaysen-Andersen M., Roepstorff P. 2D gels still have a niche in proteomics // J Proteomics. 2013. Vol. 88. P. 4–13. doi: 10.1016/j.jprot.2013.01.010
- Jorrín-Novo J.V., Pascual J., Sanchez-Lukas R., et al. Fourteen years of plant proteomics reflected in Proteomics: Moving from model species and 2DE-based approaches to orphan species and gel-free platforms // Proteomics. 2015. Vol. 15, N 5–6. P. 1089–1112. doi: 10.1002/pmic.201400349
- Jorrin-Novo J.V., Komatsu S., Sanchez-Lucas R., Rodríguez de Francisco L.E. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! // J Proteom. 2019. Vol. 198. P. 1–10. doi: 10.1016/j.jprot.2018.08.016
- Frolov A., Didio A., Ihling C., et al. The effect of simulated microgravity on the Brassica napus seedling proteome // Funct Plant Biol. 2018. Vol. 45, N 4. ID 440. doi: 10.1071/FP16378
- Tan B.C., Lim Y.S., Lau S. Proteomics in commercial crops: An overview // J Proteom. 2017. Vol. 169. P. 176–188. doi: 10.1016/j.jprot.2017.05.018
- Le Gall H., Philippe F., Domon J.-M., et al. Cell wall metabolism in response to abiotic stress // Plants. 2015. Vol. 4, N 1. P. 112–166. doi: 10.3390/plants4010112
- Barua P., Subba P., Lande N.V., et al. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire // J Proteom. 2016. Vol. 143. P. 199–208. doi: 10.1016/j.jprot.2016.04.015
- Křeček P., Skupa P., Libus J., et al. The PIN-FORMED (PIN) protein family of auxin transporters // Genome Biol. 2009. Vol. 10, N 12. ID 249. doi: 10.1186/gb-2009-10-12-249
- Lu C., Liu X., Tang Y., et al. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond // Int J Biol Macromol. 2023. Vol. 258–1. ID 128880. doi: 10.1016/j.ijbiomac.2023.128880
- Drakakaki G., van de Ven W., Pan S., et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis // Cell Res. 2012. Vol. 22, N 2. P. 413–424. doi: 10.1038/cr.2011.129
- Verdú M., Gómez J.M., Valiente-Banuet A., Schöb C. Facilitation and plant phenotypic evolution // Trends Plant Sci. 2021. Vol. 26, N 9. P. 913–923. doi: 10.1016/j.tplants.2021.04.005
- Russell J.J., Theriot J.A., Sood P., et al. Non-model model organisms // BMC Biol. 2017. Vol. 15, N 1. ID 55. doi: 10.1186/s12915-017-0391-5
- Cantó-Pastor A., Mason G.A., Brady S.M., Provart N.J. Arabidopsis bioinformatics: tools and strategies // Plant J. 2021. Vol. 108, N 6. P. 1585–1596. doi: 10.1111/tpj.15547
- Heck M., Neely B.A. Proteomics in non-model organisms: A new analytical frontier // J Proteom Res. 2020. Vol. 19, N 9. P. 3595–3606. doi: 10.1021/acs.jproteome.0c00448
- Romero-Rodríguez M.C., Jorrín-Novo J.V., Castillejo M.A. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings // J Proteom. 2019. Vol. 197. P. 60–70. doi: 10.1016/j.jprot.2018.11.003
- Larrainzar E., Wienkoop S., Weckwerth W., et al. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress // Plant Physiol. 2007. Vol. 144, N 3. P. 1495–1507. doi: 10.1104/pp.107.101618
- Bahmani M., Juhasz A., Broadbent J., et al. Proteome phenotypes discriminate the growing location and malting traits in field-grown barley // J Agric Food Chem. 2022. Vol. 70, N 34. P. 10680–10691. doi: 10.1021/acs.jafc.2c03816
- Yan S., Bhawal R., Yin Z., et al. Recent advances in proteomics and metabolomics in plants // Mol Hortic. 2022. Vol. 2, N 1. ID 17. doi: 10.1186/s43897-022-00038-9
- McDermaid A., Monier B., Zhao J., et al. Interpretation of differential gene expression results of RNA-seq data: review and integration // Brief Bioinform. 2019. Vol. 20, N 6. P. 2044–2054. doi: 10.1093/bib/bby067
- Razzaq M.K., Aleem M., Mansoor S., et al. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops // Int J Mol Sci. 2021. Vol. 22, N 3. ID 1292. doi: 10.3390/ijms22031292
- Bourgeois D.L., Kreeger P.K. Partial least squares regression models for the analysis of kinase signaling. В кн.: Kinase signaling networks. Methods in molecular biology. Vol. 1636 / A.C. Tan, P. Huang, editors. New York: Humana Press, 2017. P. 523–533. doi: 10.1007/978-1-4939-7154-1_32
- Hesami M., Alizadeh M., Jones A.M.P., Torkamaneh D. Machine learning: its challenges and opportunities in plant system biology // Appl Microbiol Biotechnol. 2022. Vol. 106, N 9–10. P. 3507–3530. doi: 10.1007/s00253-022-11963-6
- Wang P., Schumacher A.M., Shiu S.-H. Computational prediction of plant metabolic pathways // Curr Opin Plant Biol. 2022. Vol. 66. ID 102171. doi: 10.1016/j.pbi.2021.102171
- Chen L. Bioinformatics analysis of protein secretion in plants. В кн.: Plant protein secretion. Methods in molecular biology. Vol. 1662 / L. Jiang, editor. New York: Humana Press, 2017. P. 33–43. doi: 10.1007/978-1-4939-7262-3_3
- Kanehisa M., Sato Y., Kawashima M., et al. KEGG as a reference resource for gene and protein annotation // Nucleic Acids Res. 2016. Vol. 44, N D1. P. D457–D462. doi: 10.1093/nar/gkv1070
- Milacic M., Beavers D., Conley P., et al. The reactome pathway knowledgebase 2024 // Nucleic Acids Res. 2024. Vol. 52, N D1. P. D672–D678. doi: 10.1093/nar/gkad1025
- Ashburner M., Ball C.A., Blake J.A., et al. Gene ontology: tool for the unification of biology // Nat Genet. 2000. Vol. 25, N 1. P. 25–29. doi: 10.1038/75556
- Usadel B., Poree F., Nagel A., et al. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize // Plant Cell Environ. 2009. Vol. 32, N 9. P. 1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x
- Lohse M., Nagel A., Herter T., et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data // Plant Cell Environ. 2014. Vol. 37, N 5. P. 1250–1258. doi: 10.1111/pce.12231
- Schwacke R., Ponce-Soto G.Y., Krause K., et al. MapMan4: A refined protein classification and annotation framework applicable to multi-omics data analysis // Mol Plant. 2019. Vol. 12, N 6. P. 879–892. doi: 10.1016/j.molp.2019.01.003
- Hayashi T., Matsuzaki Y., Yanagisawa K., et al. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions // BMC Bioinform. 2018. Vol. 19, N S4. ID 62. doi: 10.1186/s12859-018-2073-x
- Szklarczyk D., Kirsch R., Koutrouli M., et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest // Nucleic Acids Res. 2023. Vol. 51, N D1. P. D638–D646. doi: 10.1093/nar/gkac1000
- Danko K., Lukasheva E., Zhukov V.A., et al. Detergent-assisted protein digestion-on the way to avoid the key bottleneck of shotgun bottom-up proteomics // Int J Mol Sci. 2022. Vol. 23, N 22. ID 13903. doi: 10.3390/ijms232213903
- Leonova T., Ihling C., Saoud M., et al. Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? // Front Plant Sci. 2022. Vol. 13. ID 874761. doi: 10.3389/fpls.2022.874761
- Petersen J., Rogowska-Wrzesinska A., Jensen O.N. Functional proteomics of barley and barley chloroplasts — strategies, methods and perspectives // Front Plant Sci. 2013. Vol. 4. ID 52. doi: 10.3389/fpls.2013.00052
- Sun B., Liu Z., Liu J., et al. The utility of proteases in proteomics, from sequence profiling to structure and function analysis // Proteomics. 2023. Vol. 23, N 6. ID e2200132. doi: 10.1002/pmic.202200132
- Obudulu O., Bygdell J., Sundberg B., et al. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development // BMC Genom. 2016. Vol. 7, N 1. ID 119. doi: 10.1186/s12864-016-2458-z
- Klčová B., Balarynova J., Trneny O., et al. Domestication has altered gene expression and secondary metabolites in pea seed coat // Plant J. 2024. Vol. 118, N 6. P. 2269–2295. doi: 10.1111/tpj.16734
- Galland M., He D., Lounifi I., et al. An integrated ‘multi-omics’ comparison of embryo and endosperm tissue-specific features and their impact on rice seed quality // Front Plant Sci. 2017. Vol. 8. ID 1984. doi: 10.3389/fpls.2017.01984
- Crandall S.G., Gold K.M., Jiménez-Gasco M.D.M., et al. A multi-omics approach to solving problems in plant disease ecology // PLoS One. 2020. Vol. 15, N 9. P. e0237975–e0237975. doi: 10.1371/journal.pone.0237975
Дополнительные файлы
