MOLECULAR-GENETIC FOUNDATIONS OF RICE DOMESTICATION: CONTROL OF SEED SHATTERING, GRAIN SIZE, AND PERICARP COLOR



Cite item

Full Text

Abstract

The domestication of rice (Oryza sativa L.) was accompanied by changes in several key traits known as the "domestication syndrome," including reduced seed shattering, increased grain size, and altered pericarp color. This review presents the latest data on the genes controlling these traits in rice. The molecular-genetic mechanisms of non-shattering seeds are discussed with a focus on genes such as SH4, qSH1, SHAT1, among others, and their roles in abscission layer development and impact on yield. Genes influencing grain size, such as GW2, GS3, GS5, and TGW6, their functions, and effects on agronomic characteristics are analyzed. The review also addresses genes controlling pericarp color, including Rc and Rd, their roles in the biosynthesis of anthocyanins and proanthocyanidins, and their influence on nutritional value and plant resilience. Understanding the genetic control of these traits is crucial for breeding new high-yielding and resilient rice varieties.

Full Text

Restricted Access

About the authors

Nikita A. Mirgorodskii

Sirius University of Science and Technology

Author for correspondence.
Email: i@nmirgorodskij.ru
ORCID iD: 0009-0005-6662-0741
SPIN-code: 1057-6260
Russian Federation, Russian Federation, Krasnodar Territory, federal territory "Sirius", Olympic ave., 1.

Sofya A. Slezova

Sirius University of Science and Technology

Email: slezovas@mail.ru
Russian Federation, Krasnodar Territory, federal territory "Sirius", Olympic ave., 1.

Nadezhda A. Dobarkina

Sirius University of Science and Technology

Email: n.dobarkina@yandex.ru
ORCID iD: 0009-0009-4283-519X
Russian Federation, Krasnodar Territory, federal territory "Sirius", Olympic ave., 1.

Tatiana V. Matveeva

Saint Petersburg State University; All-Russian Research Institute of Plant Protection

Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611

Dr. Sci. (Biology), Professor, department of genetics and biotechnology

Russian Federation, 7–9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

Elena A. Andreeva

Saint Petersburg State University, Saint-Petersburg, RF

Email: a.andreeva@spbu.ru
ORCID iD: 0000-0002-9326-3170
SPIN-code: 7269-8240

Кандидат биологических наук

7–9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

References

  1. Fuller D.Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World // Annals of Botany. – 2007. – Vol. 100, № 5. – P. 903–924.
  2. Pankin A., von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare) // Current Opinion in Plant Biology. – 2017. – Vol. 36. – P. 15–21. doi: 10.1016/j.pbi.2016.12.001.
  3. Khush G.S. Productivity improvements in rice // Nutrition Reviews. – 2003. – Vol. 61, Suppl. 2. – P. S114–S116.
  4. Khush G.S. Challenges for meeting the global food and nutrient needs in the new millennium // Proceedings of the Nutrition Society. – 2001. – Vol. 60. – P. 15–26.
  5. Jiang L.P., Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China // Antiquity. – 2006. – Vol. 80. – P. 355–361.
  6. Wu H., He Q., Wang Q. Advances in rice seed shattering // International Journal of Molecular Sciences. – 2023. – Vol. 24, № 10. – P. 8889.
  7. Ji H.S., Chu S.H., Jung K.H., et al. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes // Genetics. – 2006. – Vol. 173, № 2. – P. 995–1005. doi: 10.1534/genetics.105.054031.
  8. Li Y., Fan C., Xing Y., et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice // Nature Genetics. – 2011. – Vol. 43, № 12. – P. 1266–1269.
  9. Mbanjo E.G.N., Wambugu P.W., Kretzschmar T., et al. Exploring the genetic diversity within traditional Philippine pigmented rice // Rice. – 2019. – Vol. 12. – Article 3.
  10. Sun P., Zhang W., Wang Y., et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice // Journal of Integrative Plant Biology. – 2016. – Vol. 58, № 10. – P. 836–847. doi: 10.1111/jipb.12473.
  11. Ishii T., Numaguchi K., Miura K., et al. OsLG1 regulates a closed panicle trait in domesticated rice // Nature Genetics. – 2013. – Vol. 45, № 4. – P. 462–465. doi: 10.1038/ng.2567.
  12. Kobe University. It takes three: The genetic mutations that made rice cultivation possible [Электронный ресурс] // ScienceDaily. – 2022. URL: https://www.sciencedaily.com/releases/2022/07/220705162231.htm (дата обращения: 22.05.2024).
  13. Maity A., Lamichaney A., Joshi D.C., et al. Seed Shattering: A Trait of Evolutionary Importance in Plants // Frontiers in Plant Science. – 2021. – Vol. 12. – Article 657773. doi: 10.3389/fpls.2021.657773.
  14. Fuller D.Q., Qin L., Zheng Y., et al. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze // Science. – 2009. – Vol. 323, № 5921. – P. 1607–1610. doi: 10.1126/science.1166605.
  15. Li C., Zhou A., Sang T. Rice domestication by reducing shattering // Science. – 2006. – Vol. 311, № 5769. – P. 1936–1939. doi: 10.1126/science.1123604.
  16. Thurber C.S., Hepler P.K., Caicedo A.L. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice // BMC Plant Biology. – 2011. – Vol. 11. – Article 14. doi: 10.1186/1471-2229-11-14.
  17. Lin Z., Griffith M.E., Li X., et al. Origin of seed shattering in rice (Oryza sativa L.) // Planta. – 2007. – Vol. 226, № 1. – P. 11–20. doi: 10.1007/s00425-006-0460-4.
  18. Roeder A.H., Ferrándiz C., Yanofsky M.F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit // Current Biology. – 2003. – Vol. 13, № 18. – P. 1630–1635. doi: 10.1016/j.cub.2003.08.027.
  19. Konishi S., Izawa T., Lin S.Y., et al. An SNP caused loss of seed shattering during rice domestication // Science. – 2006. – Vol. 312, № 5778. – P. 1392–1396. doi: 10.1126/science.1126410.
  20. Yoon J., Cho L.H., Kim S.L., et al. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis // Plant Journal. – 2014. – Vol. 79, № 5. – P. 717–728. doi: 10.1111/tpj.12581.
  21. Zhou Y., Lu D., Li C., et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1 // Plant Cell. – 2012. – Vol. 24, № 3. – P. 1034–1048. doi: 10.1105/tpc.111.094383.
  22. Jiang L., Ma X., Zhao S., et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size // Plant Cell. – 2019. – Vol. 31, № 1. – P. 17–36. doi: 10.1105/tpc.18.00304.
  23. Lin Z., Li X., Shannon L.M., et al. Parallel domestication of the Shattering1 genes in cereals // Nature Genetics. – 2012. – Vol. 44, № 6. – P. 720–724. doi: 10.1038/ng.2281.
  24. Lv S., Wu W., Wang M., et al. Genetic control of seed shattering during African rice domestication // Nature Plants. – 2018. – Vol. 4, № 6. – P. 331–337. doi: 10.1038/s41477-018-0164-3.
  25. Cao H., Zhuo L., Su Y., et al. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice // Plant Journal. – 2016. – Vol. 86, № 4. – P. 308–321. doi: 10.1111/tpj.13165.
  26. Yoon J., Cho L.H., Antt H.W., et al. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes // Plant Physiology. – 2017. – Vol. 174, № 1. – P. 312–325. doi: 10.1104/pp.17.00298.
  27. Ning J., He W., Wu L., et al. The MYB transcription factor Seed Shattering 11 controls seed shattering by repressing lignin synthesis in African rice // Plant Biotechnology Journal. – 2023. – Vol. 21, № 5. – P. 931–942. doi: 10.1111/pbi.14004.
  28. Takeda S., Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes // Nature Reviews Genetics. – 2008. – Vol. 9, № 6. – P. 444–457.
  29. Fitzgerald M.A., McCouch S.R., Hall R.D. Not just a grain of rice: the quest for quality // Trends in Plant Science. – 2009. – Vol. 14, № 3. – P. 133–139.
  30. Sakamoto T., Matsuoka M. Identifying and exploiting grain yield genes in rice // Current Opinion in Plant Biology. – 2008. – Vol. 11, № 2. – P. 209–214.
  31. Harberd N. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality // Journal of Genetics and Genomics. – 2015. – Vol. 42, № 10. – P. 597–599.
  32. Li Y., Fan C., Xing Y., et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice // Nature Genetics. – 2011. – Vol. 43, № 12. – P. 1266–1269. doi: 10.1038/ng.977.
  33. Ishimaru K., Hirotsu N., Madoka Y., et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield // Nature Genetics. – 2013. – Vol. 45, № 6. – P. 707–711. doi: 10.1038/ng.2612.
  34. Song X.J., Huang W., Shi M., et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase // Nature Genetics. – 2007. – Vol. 39, № 5. – P. 623–630. doi: 10.1038/ng2014.
  35. Fan C., Xing Y., Mao H., et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein // Theoretical and Applied Genetics. – 2006. – Vol. 112, № 6. – P. 1164–1171. doi: 10.1007/s00122-006-0218-1.
  36. Liu J.P., Van Eck J., Cong B., Tanksley S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit // Proceedings of the National Academy of Sciences of the USA. – 2002. – Vol. 99, № 20. – P. 13302–13306.
  37. O’Leary J.M., Hamilton J.M., Deane C.M., et al. Solution structure and dynamics of a prototypical Chordin-like cysteine-rich repeat (von Willebrand factor type C module) from collagen IIA // Journal of Biological Chemistry. – 2004. – Vol. 279, № 51. – P. 53857–53866.
  38. Kikuchi S., Satoh K., Nagata T., et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice // Science. – 2003. – Vol. 301, № 5631. – P. 376–379.
  39. Fan C., Xing Y., Mao H., et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein // Theoretical and Applied Genetics. – 2006. – Vol. 112, № 6. – P. 1164–1171.
  40. Mao H., Sun S., Yao J., et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice // Proceedings of the National Academy of Sciences of the USA. – 2010. – Vol. 107, № 45. – P. 19579–19584.
  41. Song X., Huang W., Shi M., et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase // Nature Genetics. – 2007. – Vol. 39, № 5. – P. 623–630.
  42. Shomura A., Izawa T., Ebana K., et al. Deletion in a gene associated with grain size increased yields during rice domestication // Nature Genetics. – 2008. – Vol. 40, № 8. – P. 1023–1028.
  43. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology // Plant Physiology. – 2001. – Vol. 126, № 2. – P. 485–493.
  44. Nagata K., Yoshinaga S., Takanashi J., Terao T. Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice cultivar Takanari, a cultivar bearing a large number of spikelets // Plant Production Science. – 2001. – Vol. 4, № 3. – P. 173–183.
  45. Yang J., Zhang J., Wang Z., et al. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice // Crop Science. – 2002. – Vol. 42, № 3. – P. 766–772.
  46. Peng S., Khush G.S., Virk P., et al. Progress in ideotype breeding to increase rice yield potential // Field Crops Research. – 2008. – Vol. 108, № 1. – P. 32–38.
  47. Holton T.A., Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis // The Plant Cell. – 1995. – Vol. 7, № 7. – P. 1071–1083.
  48. Jakubowska A., Kowalczyk S. A specific enzyme hydrolyzing 6-O-(4-O)-indole-3-ylacetyl-β-d-glucose in immature kernels of Zea mays // Journal of Plant Physiology. – 2005. – Vol. 162, № 2. – P. 207–213.
  49. Brown R.C., Lemmon B.E., Olsen O.-A. Development of the endosperm in rice (Oryza sativa L.): cellularization // Journal of Plant Research. – 1996. – Vol. 109, № 4. – P. 301–313.
  50. Mizutani M., Naganuma T., Tsutsumi K., Saitoh Y. The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm // Journal of Experimental Botany. – 2010. – Vol. 61, № 3. – P. 791–798.
  51. Xia D., Zhang Y., Zhang H., et al. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice // The Crop Journal. – 2021. – Vol. 9, № 3. – P. 598–608.
  52. Oikawa T., Maeda H., Oguchi T., et al. The birth of a black rice gene and its local spread by introgression // The Plant Cell. – 2015. – Vol. 27, № 9. – P. 2401–2414.
  53. Ciulu M., Cádiz-Gurrea M.L., Segura-Carretero A. Extraction and analysis of phenolic compounds in rice: a review // Molecules. – 2018. – Vol. 23, № 11. – Article 2890.
  54. Weng J., Gu S., Wan X., et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight // Cell Research. – 2008. – Vol. 18, № 12. – P. 1199–1209.
  55. Gonçalves A.C., Campos G., Martins Z., et al. Dietary effects of anthocyanins in human health: A comprehensive review // Pharmaceuticals. – 2021. – Vol. 14, № 7. – Article 690.
  56. Meng L., Wang Z., Ying Y., et al. Determinant factors and regulatory systems for anthocyanin biosynthesis in rice apiculi and stigmas // Rice. – 2021. – Vol. 14. – Article 45.
  57. Furukawa T., Maekawa M., Oki T., et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp // The Plant Journal. – 2007. – Vol. 49, № 1. – P. 91–102.
  58. Chachar Z.A., Zhou J., Li W., et al. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review // Frontiers in Plant Science. – 2023. – Vol. 15. – Article 1310634.
  59. Nagata S., Takahashi M. Popytka postroeniya dvenadtsati grupp scepeniya v yaponskom rise [Attempt to construct twelve linkage groups in Japanese rice]. Japanese Journal of Genetics. 1963;38(1):10–15. (In Russ.)
  60. Sweeney M.T., Thomson M.J., Cho Y.G., et al. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice // The Plant Cell. – 2006. – Vol. 18, № 2. – P. 283–294.
  61. Vaughan L.K., Ottis B.V., Prazak-Havey A.M., et al. Is all red rice found in commercial rice really Oryza sativa? // Weed Science. – 2001. – Vol. 49, № 4. – P. 468–476.
  62. Gu X.Y., Foley M.E., Horvath D.P., et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice // Genetics. – 2011. – Vol. 189, № 4. – P. 1515–1524.
  63. Raju R.S., Annamalai A., Bera S., et al. Physiological and biochemical traits regulating preharvest sprouting resistance in rice // Frontiers in Plant Science. – 2023. – Vol. 14. – Article 1167466.
  64. Gu X.Y., Kianian S.F., Foley M.E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa) // Genetics. – 2004. – Vol. 166, № 3. – P. 1503–1516.
  65. Tokmakov S.V., Chernov A.V., Kustanovich E.E., Beil'kin I.A. Sozdanie molekulyarnogo markera dlya otsenki vnutrividovogo polimorfizma po genу Rc, obuslavlivayushchemu krasnuyu okrasku perikarpa risa Oryza sativa L [Development of a molecular marker to assess intraspecific polymorphism for the Rc gene responsible for red pericarp coloration in Oryza sativa L]. Ekologicheskaya genetika. 2011;9(3):57–67. (In Russ.)
  66. Alekseev V.I., Grigor'ev A.M., Silin A.N., Kosikov E.N. Rannaya diagnostika krasnozernosti risa, osnovannaya na primenenii DNK-markirovaniya [Early diagnosis of red grain in rice based on the use of DNA-marking]. In: VII S'ezd Vavilovskogo obshchestva genetikov i selektsionerov, posvyashchennyi 100-letiyu kafedry genetiki SPbGU [VII Congress of the Vavilov Society of Geneticists and Breeders dedicated to the 100th anniversary of the Department of Genetics, St. Petersburg State University]; 2019. p.1106. (In Russ.)
  67. Zhu Y., Wang L., Wang X., et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice // Plant Biotechnology Journal. – 2019. – Vol. 17, № 11. – P. 2096–2105.
  68. Zelenskaya O.V., Gubanov D.S., Salikhova N.F., et al. Geneticheskie resursy risa (Oryza sativa L.) s okrashennym perikarpom zerna [Genetic resources of rice (Oryza sativa L.) with colored grain pericarp]. Vavilovskii zhurnal genetiki i selektsii. 2018;22(3):296–303. (In Russ.)
  69. Maeda H., Oikawa T., Nagamatsu S., et al. Genetic dissection of black grain rice by the development of a near isogenic line // Breeding Science. – 2014. – Vol. 64, № 2. – P. 134–141.
  70. Gu X.Y., Kianian S.F., Foley M.E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa) // Genetics. – 2004. – Vol. 166, № 3. – P. 1503–1516.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.