Molecular-Genetic Foundations of Rice Domestication: Control of Seed Shattering, Grain Size, and Pericarp Coloration

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Domestication of rice (Oryza sativa L.), one of the five earliest cereal crops, gave rise to a characteristic “domestication syndrome” marked by loss of natural seed dispersal, enlargement and colour change of the caryopsis, shortening of seed dormancy, and transition to an annual life cycle. Archaeological, physiological-genetic and molecular evidence is synthesised here to summarise the mechanisms underlying these key agronomic traits. Reduced seed shattering is linked to mutations andallelic diversification at loci SH4, qSH1, SH5, SHAT1, CPL1, OsSh1/ObSH3, ObSH11, NPC1, OSH15, GRF4 and OsLG1/SPR3, which govern formation and degradation of the spikelet abscission layer. Grain size is determined by QTL GW2, GS3, GS5 and TGW6, modulating cell division and endosperm development and thus shaping thousand-grain weight and yield. Pericarp pigmentation is controlled by Rc and Rd together with the Kala1–Kala3–Kala4 cassette; structural rearrangements in theKala4 promoter trigger ectopic expression of a bHLH factor and anthocyanin accumulation, whereas a 14-bp deletion in Rc converted most cultivars to the white-grained type and was later functionally restored via CRISPR/Cas9. Collectively, these findings provide a genetic foundation for targeted improvement of yield, harvestability and nutritional quality in modern rice breeding.

Full Text

Restricted Access

About the authors

Nikita A. Mirgorodskii

Sirius University of Science and Technology

Author for correspondence.
Email: i@nmirgorodskij.ru
ORCID iD: 0009-0005-6662-0741
SPIN-code: 1057-6260
Russian Federation, 1 Olimpiiskii av., Sirius Federal Territory, 354340

Sofya A. Slezova

Sirius University of Science and Technology

Email: slezovas@mail.ru
Russian Federation, 1 Olimpiiskii av., Sirius Federal Territory, 354340

Nadezhda A. Dobarkina

Sirius University of Science and Technology

Email: n.dobarkina@yandex.ru
ORCID iD: 0009-0009-4283-519X
Russian Federation, 1 Olimpiiskii av., Sirius Federal Territory, 354340

Tatiana V. Matveeva

Saint Petersburg State University; All-Russian Research Institute of Plant Protection

Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg; Saint Petersburgcity, Pushkin

Elena A. Andreeva

Saint Petersburg State University

Email: a.andreeva@spbu.ru
ORCID iD: 0000-0002-9326-3170
SPIN-code: 7269-8240

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Fuller DQ. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot. 2007;100(5):903–924. doi: 10.1093/aob/mcm048
  2. Pankin A, von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare). Curr Opin Plant Biol. 2017;36:15–21. doi: 10.1016/j.pbi.2016.12.001
  3. Khush GS. Productivity improvements in rice. Nutr Rev. 2003;61(S6): S114–S116. doi: 10.1301/nr.2003.jun.S114-S116
  4. Khush GS. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc. 2001;60:15–26. doi: 10.1079/PNS200075
  5. Jiang LP, Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity. 2006;80(308):355–361. doi: 10.1017/S0003598X00093674
  6. Wu H, He Q, Wang Q. Advances in rice seed shattering. Int J Mol Sci. 2023;24(10):8889. doi: 10.3390/ijms24108889
  7. Ji H-S, Chu S-H, Jiang W, et al. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics. 2006;173(2):995–1005. doi: 10.1534/genetics.105.054031.
  8. Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet. 2011;43(12):1266–1269. doi: 10.1038/ng.977
  9. Nkouaya Mbanjo EG, Jones H, Isaguirre Caguiat XG, et al. Exploring the genetic diversity within traditional Philippine pigmented rice. Rice. 2019;12:27. doi: 10.1186/s12284-019-0281-2
  10. Ishii T, Numaguchi K, Miura K, et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet. 2013;45(4):462–465.doi: 10.1038/ng.2567
  11. Maity A, Lamichaney A, Joshi DC, et al. Seed shattering: A trait of evolutionary importance in plants. Front Plant Sci. 2021;12:657773. doi: 10.3389/fpls.2021.657773
  12. Fuller DQ, Qin L, Zheng Y. et al. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science. 2009;323(5921):1607–1610. doi: 10.1126/science.1166605
  13. Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006;311(5769):1936–1939. doi: 10.1126/science.1123604
  14. Thurber CS, Hepler PK, Caicedo AL. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice. BMC Plant Biol. 2011;11:14. doi: 10.1186/1471-2229-11-14
  15. Lin Z, Griffith ME, Li X, et al. Origin of seed shattering in rice (Oryza sativa L.). Planta. 2007;226(1):11–20. doi: 10.1007/s00425-006-0460-4
  16. Roeder AHK, Ferrándiz C, Yanofsky MF. The role of theREPLUMLESS homeodomain protein in patterning the Arabidopsis fruit.Curr Biol. 2003;13(18):1630–1635. doi: 10.1016/j.cub.2003.08.027
  17. Konishi S, Izawa T, Lin SY, et al. An SNP caused loss of seed shattering during rice domestication. Science. 2006;312(5778):1392–1396.doi: 10.1126/science.1126410
  18. Yoon J, Cho L-H, Kim SL, et al. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J. 2014;79(5):717–728. doi: 10.1111/tpj.12581
  19. Zhou Y, Lu D, Li C, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell. 2012;24(3):1034–1048. doi: 10.1105/tpc.111.094383
  20. Jiang L, Ma X, Zhao S, et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell. 2019;31(1):17–36. doi: 10.1105/tpc.18.00304
  21. Lin Z, Li X, Shannon LM, et al. Parallel domestication of the Shattering1 genes in cereals. Nat Genet. 2012;44(6):720–724. doi: 10.1038/ng.2281
  22. Lv S, Wu W, Wang M, et al. Genetic control of seed shattering during African rice domestication. Nat Plants. 2018;4(6):331–337.doi: 10.1038/s41477-018-0164-3
  23. Cao H, Zhuo L, Su Y, et al. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J. 2016;86(4):308–321. doi: 10.1111/tpj.13165
  24. Sun P, Zhang W, Wang Y, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol. 2016;58(10):836–847. doi: 10.1111/jipb.12473
  25. Ning J, He W, Wu L, et al. The MYB transcription factor Seed Shattering 11 controls seed shattering by repressing lignin synthesis in African rice. Plant Biotechnol J. 2023;21(5):931–942. doi: 10.1111/pbi.14004
  26. Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet. 2008;9(6):444–457. doi: 10.1038/nrg2342
  27. Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality. Trends Plant Sci. 2009;14(3):133–139.doi: 10.1016/j.tplants.2008.12.004
  28. Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol. 2008;11(2):209–214. doi: 10.1016/j.pbi.2008.01.009
  29. Harberd NP. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality. J Genet Genom. 2015;42(11):597–599. doi: 10.1016/j.jgg.2015.09.008
  30. Ishimaru K, Hirotsu N, Madoka Y, et al. Loss of function of theIAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet. 2013;45(6):707–711. doi: 10.1038/ng.2612
  31. Jakubowska A, Kowalczyk S. A specific enzyme hydrolyzing 6-O-(4-O)-indole-3-ylacetyl-β-d-glucose in immature kernels of Zea mays. J Plant Physiol. 2005;162(2):207–213. doi: 10.1016/j.jplph.2004.05.015
  32. Song X-J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet. 2007;39(5):623–630. doi: 10.1038/ng2014
  33. Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–1171. doi: 10.1007/s00122-006-0218-1
  34. Liu JP, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS USA. 2002;99(20):13302–13306. doi: 10.1073/pnas.162485999
  35. O’Leary JM, Hamilton JM, Deane CM, et al. Solution structure and dynamics of a prototypical Chordin-like cysteine-rich repeat (von Willebrand factor type C module) from collagen IIA. J Biol Chem. 2004;279(51):53857–53866. doi: 10.1074/jbc.M409225200
  36. Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science. 2003;301(5631):376–379. doi: 10.1126/science.1081288
  37. Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–1171. doi: 10.1007/s00122-006-0218-1
  38. Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. PNAS USA. 2010;107(45):19579–19584. doi: 10.1073/pnas.1014419107
  39. Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet. 2008;40(8):1023–1028. doi: 10.1038/ng.169
  40. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493. doi: 10.1104/pp.126.2.485
  41. Nagata K, Yoshinaga S, Takanashi J-i, Terao T. Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice cultivar Takanari, a cultivar bearing a large number of spikelets. Plant Prod Sci. 2001;4(3):173–183. doi: 10.1626/pps.4.173
  42. Yang J, Zhang J, Wang Z, et al. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci. 2002;42(3):766–772. doi: 10.2135/cropsci2002.7660
  43. Peng S, Khush GS, Virk P, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008;108(1):32–38.doi: 10.1016/j.fcr.2008.04.001
  44. Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 1995;7(7):1071–1083. doi: 10.2307/3870058
  45. Brown RC, Lemmon BE, Olsen O-A. Development of the endosperm in rice (Oryza sativa L.): cellularization. J Plant Res. 1996;109(4):301–313. doi: 10.1007/BF02344477
  46. Mizutani M, Naganuma T, Tsutsumi K, Saitoh Y. The syncytium-specific expression of the Orysa; KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm.J Exp Bot. 2010;61(3):791–798. doi: 10.1093/jxb/erp343
  47. Xia D, Zhang Y, Zhang H, et al. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop J. 2021;9(3):598–608. doi: 10.1016/j.cj.2021.03.013
  48. Oikawa T, Maeda H, Oguchi T, et al. The birth of a black rice gene and its local spread by introgression. Plant Cell. 2015;27(9):2401–2414.doi: 10.1105/tpc.15.00310
  49. Ciulu M, de la Luz Cádiz-Gurrea M, Segura-Carretero A. Extraction and analysis of phenolic compounds in rice: a review. Molecules. 2018;23(11):2890. doi: 10.3390/molecules23112890
  50. Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008;18(12):1199–1209. doi: 10.1038/cr.2008.307
  51. Gonçalves AC, Campos G, Martins Z, et al. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021;14(7):690. doi: 10.3390/ph14070690
  52. Meng L, Qi C, Wang Z, et al. Determinant factors and regulatory systems for anthocyanin biosynthesis in rice apiculi and stigmas. Rice. 2021;14:45. doi: 10.1186/s12284-021-00480-1
  53. Furukawa T, Maekawa M, Oki T, et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J. 2007;49(1):91–102. doi: 10.1111/j.1365-313X.2006.02958.x
  54. Chachar ZA, Zhou J, Li W, et al. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. Front Plant Sci. 2023;15:1310634. doi: 10.3389/fpls.2024.1310634
  55. Nagata S, Takahashi M. Attempt to construct twelve linkage groups in Japanese rice. Japanese Journal of Genetics. 1963;38(1):10–15.
  56. Sweeney MT, Thomson MJ, Cho YG, et al. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell. 2006;18(2):283–294. doi: 10.1105/tpc.105.038430
  57. Vaughan LK, Ottis BV, Prazak-Havey AM, et al. Is all red rice found in commercial rice really Oryza sativa? Weed Sci. 2001;49(4):468–476. doi: 10.1614/0043-1745(2001)049[0468:IARRFI]2.0.CO;2
  58. Gu X-Y, Foley ME, Horvath DP, et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics. 2011;189(4):1515–1524. doi: 10.1534/genetics.111.131169
  59. Raju RS, Sahoo C, Hanjagi PS, Samai KC. Physiological and biochemical traits regulating preharvest sprouting resistance in rice. ORYZA — Int J Rice. 2023;60(1):140–149. doi: 10.35709/ory.2023.60.1.5
  60. Gu X-Y, Kianian SF, Foley ME. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics. 2004;166(3):1503–1516. doi: 10.1534/genetics.166.3.1503
  61. Tokmakov SV, Mukhina ZM, Bogomaz DI, Matveeva TV. Development of molecular marker for assessment of intraspecific polymorphism of Rc gene conditioning red pericarp in rice Oryza sativa L. Ecological genetics. 2011;9(3):57–67. EDN: OKDPLB doi: 10.17816/ecogen9357-67
  62. Alekseev VI, Grigoriev AM, Silin AN, Kosikov EN. Early diagnostics of rice red blotch based on the application of DNA marking. In: VII Congress of the Vavilov Society of Geneticists and Breeders dedicated to the 100th anniversary of the Department of Genetics, SPSU. 2019. P. 1106. (In Russ.)
  63. Zhu Y, Lin Y, Chen S, et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice. Plant Biotechnol J. 2019;17(11):2096–2105. doi: 10.1111/pbi.13125
  64. Zelenskaya OV, Zelensky GL, Ostapenko NV, Tumanyan IG. Genetic resources of rice (Oryza sativa L.) with colored pericarp. Vavilov journal of genetics and breeding. 2018;22(3):296–303. doi: 10.18699/VJ18.363EDN: XMHVCP
  65. Maeda H, Yamaguchi T, Omoteno M, et al. Genetic dissection of black grain rice by the development of a near isogenic line. Breed Sci. 2014;64(2):134–141. doi: 10.1270/jsbbs.64.134

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.