The Role of Oxidative Stress-Related Genes in Polycystic Ovary Syndrome: Insights into Genetic Susceptibility and Pathogenesis



Cite item

Full Text

Abstract

Oxidative stress has recently been shown to play a central role in the pathophysiology of numerous diseases, including polycystic ovary syndrome (PCOS). This is a hormonal condition that is highly prevalent in premenopausal women. The exact etiology of PCOS is still unknown; however, several factors are believed to be associated with the condition, including excessive androgen secretion from the ovaries, insulin resistance, partial folliculogenesis arrest, chronic low-grade secretion of inflammatory mediators, and, more recently, oxidative stress. In women with PCOS, oxidative stress has a role in ovarian dysfunction, systemic inflammation, and metabolic dysregulation. It intensifies the main characteristics, such as disruption of folliculogenesis, hyperandrogenism, and insulin resistance. Polymorphisms in genes related to oxidative stress can alter the body's susceptibility to the syndrome by influencing the imbalance between the generation of reactive oxygen species (ROS) and the decreased antioxidant defenses. The genes that are part of antioxidant defense systems, such as SOD2, GPX1, GPX4, CAT, and PON1, are highlighted in this review along with their associations with PCOS risk and clinical outcomes. Rs4880 in SOD2 and rs4880 and rs713041 in GPX4 have been associated with PCOS, while the significance of other variants in disease development remains unclear and requires further investigation. Understanding the genetic basis of oxidative stress has the potential to enhance biomarker discovery and clarify the molecular pathways involved in the development and progression of PCOS.

Full Text

Restricted Access

About the authors

Светлана Витальевна Ломтева

CENTER OF HUMAN REPRODUCTION AND IVF; Southern Federal University

Author for correspondence.
Email: embryolab61@gmail.com
ORCID iD: 0000-0002-8791-1936
Scopus Author ID: 6507751405

embryologist, Senior researcher, Ph.D. of Biological Sciences

 

Russian Federation

References

  1. Sulaiman MAH, Al-Farsi YM, Al-Khaduri MM, et al. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int. J. Womens. Health. 2018 10: 763. doi: 10.2147/IJWH.S166461.
  2. Amin M, Gragnoli C. Genome-wide linkage and association study identifies novel genes and pathways implicated in polycystic ovarian syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023 27(8): 3719–32. doi: 10.26355/EURREV_202304_32171.
  3. Li Y, Tan Y. Bioinformatics Analysis of ceRNA Network Related to Polycystic Ovarian Syndrome. Comput. Math. Methods Med. 2021 2021. doi: 10.1155/2021/9988347.
  4. Sun Y, Yuan Y, Yang H, et al. Association between Common Genetic Variants and Polycystic Ovary Syndrome Risk in a Chinese Han Population. J. Clin. Res. Pediatr. Endocrinol. 2016 8(4): 405. doi: 10.4274/JCRPE.2784.
  5. Li X, Xiao H, Ma Y, et al. Identifying novel genetic loci associated with polycystic ovary syndrome based on its shared genetic architecture with type 2 diabetes. Front. Genet. 2022 13(3): 905716. doi: 10.3389/FGENE.2022.905716/FULL.
  6. Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Arch. Physiol. Biochem. 2020 126(2): 183–86. doi: 10.1080/13813455.2018.1499120.
  7. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2017 114(12): 1752–61. doi: 10.1172/JCI21625.
  8. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015 30(1): 11. doi: 10.1007/S12291-014-0446-0.
  9. Zuo T, Zhu M, Xu W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxid. Med. Cell. Longev. 2016 2016. doi: 10.1155/2016/8589318.
  10. Teleanu DM, Niculescu AG, Lungu II, et al. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022 23(11). doi: 10.3390/IJMS23115938.
  11. Sabuncu T, Vural H, Harma M, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin. Biochem. 2001 34(5): 407–13. doi: 10.1016/S0009-9120(01)00245-4.
  12. Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Arch. Physiol. Biochem. 2020 126(2): 183–86. doi: 10.1080/13813455.2018.1499120.
  13. Herman R, Jensterle M, Janež A, et al. Genetic Variability in Antioxidative and Inflammatory Pathways Modifies the Risk for PCOS and Influences Metabolic Profile of the Syndrome. Metabolites. 2020 10(11): 1–18. doi: 10.3390/METABO10110439.
  14. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005 3(1): 1–21. doi: 10.1186/1477-7827-3-28/TABLES/2.
  15. Li W, Liu C, Yang Q, et al. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front. Nutr. 2022 9: 1018674. doi: 10.3389/FNUT.2022.1018674/BIBTEX.
  16. Terao H, Wada-Hiraike O, Nagumo A, et al. Role of oxidative stress in follicular fluid on embryos of patients undergoing assisted reproductive technology treatment. J. Obstet. Gynaecol. Res. 2019 45(9): 1884–91. doi: 10.1111/JOG.14040.
  17. Liu Q, Liu H, Bai H, et al. Association of SOD2 A16V and PON2 S311C polymorphisms with polycystic ovary syndrome in Chinese women. J. Endocrinol. Invest. 2019 42(8): 909–21. doi: 10.1007/S40618-018-0999-5.
  18. Bizoń A, Tchórz A, Madej P, et al. The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome-Preliminary Study. J. Clin. Med. 2022 11(9). doi: 10.3390/JCM11092548.
  19. Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013 42: 116–24. doi: 10.1016/J.REPROTOX.2013.08.005.
  20. Uçkan K, Demir H, Turan K, et al. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. Int. J. Clin. Pract. 2022 2022: 4579831. doi: 10.1155/2022/4579831.
  21. Polat S, Şimşek Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic. Res. 2020 54(6): 467–76. doi: 10.1080/10715762.2020.1802022.
  22. Sun Y, Li S, Liu H, et al. Association of GPx1 P198L and CAT C-262T Genetic Variations With Polycystic Ovary Syndrome in Chinese Women. Front. Endocrinol. (Lausanne). 2019 10: 771. doi: 10.3389/FENDO.2019.00771.
  23. Yu N, Wu L, Xing X. NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting endoplasmic reticulum stress via inactivating PERK/ATF4 pathway. Tissue Cell. 2025 92. doi: 10.1016/J.TICE.2024.102640.
  24. Wang Y, Li N, Zeng Z, et al. Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol. Hum. Reprod. 2021 27(2). doi: 10.1093/MOLEHR/GAAA081.
  25. Singh S, Pal N, Shubham S, et al. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023 12(4): 1454. doi: 10.3390/JCM12041454.
  26. Gongadashetti K, Gupta P, Dada R, Malhotra N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. Biomed. 2021 19(5): 449–56. doi: 10.18502/IJRM.V19I5.9254.
  27. Nasiri N, Moini A, Eftekhari-Yazdi P, et al. Oxidative Stress Statues in Serum and Follicular Fluid of Women with Endometriosis Citation. CELL JOURNAL(Yakhteh). n.d. 18(4): 582–87.
  28. Murri M, Luque-ramírez M, Insenser M, et al. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum. Reprod. Update. 2013 19(3): 268–88. doi: 10.1093/HUMUPD/DMS059.
  29. Bizoń A, Tchórz A, Madej P, et al. The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study. J. Clin. Med. 2022 11(9): 2548. doi: 10.3390/JCM11092548.
  30. Jeelani H, Ganie MA, Masood A, et al. Assessment of PON1 activity and circulating TF levels in relation to BMI, testosterone, HOMA-IR, HDL-C, LDL-C, CHO, SOD activity and TAC in women with PCOS: An observational study. Diabetes Metab. Syndr. 2019 13(5): 2907–15. doi: 10.1016/J.DSX.2019.08.001.
  31. Nawar AS, Alwan ZHO, Sheikh QI. Gene expression and plasma level of CuZn and Mn superoxide dismutase in Iraqi women with polycystic ovary syndrome. Med. J. Babylon. 2022 19(4): 691–96. doi: 10.4103/MJBL.MJBL_221_22.
  32. Rudnicka E, Duszewska AM, Kucharski M, et al. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress in polycystic ovary syndrome. Reproduction. 2022 164(6): F145–54. doi: 10.1530/REP-22-0152.
  33. Agarwal A, Tadros H, Tvrdá E. Role of oxidants and antioxidants in female reproduction. Oxidative Stress Antioxid. Prot. 2016 : 253–80. doi: 10.1002/9781118832431.
  34. González F, Minium J, Rote NS, Kirwan JP. Hyperglycemia alters tumor necrosis factor-alpha release from mononuclear cells in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005 90(9): 5336–42. doi: 10.1210/JC.2005-0694.
  35. Yilmaz Ö, Calan M, Kume T, et al. The effect of prolactin levels on MPV in women with PCOS. Clin. Endocrinol. (Oxf). 2015 82(5): 747–52. doi: 10.1111/CEN.12647.
  36. Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019 171. 2019 17(1): 1–15. doi: 10.1186/S12958-019-0509-4.
  37. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999 6(2): 99–104. doi: 10.1038/SJ.CDD.4400476.
  38. Uyanikoglu H, Sabuncu T, Dursun H, et al. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: a case-controlled descriptive study. Biomarkers. 2017 22(7): 643–47. doi: 10.1080/1354750X.2016.1265004.
  39. Liu Y, Yu Z, Zhao S, et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet. 2021 38(2): 471–77. doi: 10.1007/S10815-020-02014-Y.
  40. Nakagawa K, Hisano M, Sugiyama R, Yamaguchi K. Measurement of oxidative stress in the follicular fluid of infertility patients with an endometrioma. Arch. Gynecol. Obstet. 2016 293(1): 197–202. doi: 10.1007/S00404-015-3834-7.
  41. Jozwik M, Wolczynski S, Jozwik M, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol. Hum. Reprod. 1999 5(5): 409–13. doi: 10.1093/MOLEHR/5.5.409.
  42. Prabhu YD, Borthakur A, A.G S, et al. Increased pro-inflammatory cytokines in ovary and effect of γ-linolenic acid on adipose tissue inflammation in a polycystic ovary syndrome model. J. Reprod. Immunol. 2021 146. doi: 10.1016/J.JRI.2021.103345.
  43. Li Y, Zhang J, Liu Y-D, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol. 2020 17(12): 1798–1810. doi: 10.1080/15476286.2020.1783850.
  44. Dabravolski SA, Nikiforov NG, Eid AH, et al. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2021 22(8). doi: 10.3390/IJMS22083923.
  45. Victor VM, Rovira-Llopis S, Bañuls C, et al. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS One. 2016 11(3). doi: 10.1371/JOURNAL.PONE.0151960.
  46. Sugino N, Takiguchi S, Kashida S, et al. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol. Hum. Reprod. 2000 6(1): 19–25. doi: 10.1093/MOLEHR/6.1.19.
  47. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem. J. 2016 473(11): 1483–1501. doi: 10.1042/BCJ20160124.
  48. Rice S, Christoforidis N, Gadd C, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum. Reprod. 2005 20(2): 373–81. doi: 10.1093/HUMREP/DEH609.
  49. Zhao H, Zhang J, Cheng X, et al. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J. Ovarian Res. 2023 16(1). doi: 10.1186/S13048-022-01091-0.
  50. Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 2010 285(39): 29965–73. doi: 10.1074/JBC.M110.128694.
  51. Tuncman G, Hirosumi J, Solinas G, et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2006 103(28): 10741–46. doi: 10.1073/PNAS.0603509103/ASSET/0F1CD2B9-B508-4D9F-93D5-C26DAF64364F/ASSETS/GRAPHIC/ZPQ0240625070006.JPEG.
  52. Zuo T, Zhu M, Xu W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxid. Med. Cell. Longev. 2016 14. doi: 10.1155/2016/8589318.
  53. Ali RM, Lomteva SV, Aleksandrova AA, et al. Effect of polymorphisms CYP17 (rs743572), SOD2 (rs4880) and CAT (rs1001179) on hormonal profile and redox status of blood serum and follicular fluid in patients with polycystic ovary syndrome. Gene Reports. 2023 33: 101817. doi: 10.1016/J.GENREP.2023.101817.
  54. Alkhuriji AF, Alomar SY, Babay ZA, et al. Association SOD2 and PON1 Gene Polymorphisms with Polycystic Ovary Syndrome in Saudi Women. Mol. Syndromol. 2021 13(2): 117–22. doi: 10.1159/000519527.
  55. Arslan AO, Celik F, Kucukhuseyin O, et al. Investigation of variants of critically important antioxidant enzyme genes in patients with polycystic ovary syndrome. Exp. Biomed. Res. 2019 2(1): 8–19. doi: 10.30714/J-EBR.2019147578.
  56. Salahshoor MR, Sohrabi M, Jalili F, et al. No evidence for a major effect of three common polymorphisms of the GPx1, MnSOD, and CAT genes on PCOS susceptibility. J. Cell. Biochem. 2018 120(2): 2362–69. doi: 10.1002/JCB.27564.
  57. Herman R, Jensterle M, Janež A, et al. Genetic Variability in Antioxidative and Inflammatory Pathways Modifies the Risk for PCOS and Influences Metabolic Profile of the Syndrome. Metabolites. 2020 10(11): 1–18. doi: 10.3390/METABO10110439.
  58. Herman R, Jensterle M, Janež A, et al. Genetic Variability in Antioxidative and Inflammatory Pathways Modifies the Risk for PCOS and Influences Metabolic Profile of the Syndrome. Metabolites. 2020 10(11): 1–18. doi: 10.3390/METABO10110439.
  59. Luddi A, Capaldo A, Focarelli R, et al. Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. Reprod. Biol. Endocrinol. 2016 14(1). doi: 10.1186/S12958-016-0184-7.
  60. Yifu P. A review of antioxidant N-acetylcysteine in addressing polycystic ovary syndrome. Gynecol. Endocrinol. 2024 40(1). doi: 10.1080/09513590.2024.2381498.
  61. Shahveghar Asl Z, Parastouei K, Eskandari E. The effects of N-acetylcysteine on ovulation and sex hormones profile in women with polycystic ovary syndrome: a systematic review and meta-analysis. Br. J. Nutr. 2023 130(2): 202–10. doi: 10.1017/S0007114522003270.
  62. Thakker D, Raval A, Patel I, Walia R. N-acetylcysteine for polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Obstet. Gynecol. Int. 2015 2015: 1–13. doi: 10.1155/2015/817849.
  63. Furat Rencber S, Kurnaz Ozbek S, Eraldemlr C, et al. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J. Ovarian Res. 2018 11(1). doi: 10.1186/S13048-018-0427-7.
  64. Huo P, Li M, Le J, et al. Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1. Syst. Biol. Reprod. Med. 2023 69(2): 153–65. doi: 10.1080/19396368.2022.2125855.
  65. Fadlalmola HA, Elhusein AM, Al-Sayaghi KM, et al. Efficacy of resveratrol in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials. Pan Afr. Med. J. 2023 44. doi: 10.11604/PAMJ.2023.44.134.32404.
  66. Zhang T, He Q, Xiu H, et al. Efficacy and Safety of Coenzyme Q10 Supplementation in the Treatment of Polycystic Ovary Syndrome: a Systematic Review and Meta-analysis. Reprod. Sci. 2023 30(4): 1033–48. doi: 10.1007/S43032-022-01038-2.
  67. Karamali M, Gholizadeh M. The effects of coenzyme Q10 supplementation on metabolic profiles and parameters of mental health in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2022 38(1): 45–49. doi: 10.1080/09513590.2021.1991910.
  68. Taghizadeh S, Izadi A, Shirazi S, et al. The effect of coenzyme Q10 supplementation on inflammatory and endothelial dysfunction markers in overweight/obese polycystic ovary syndrome patients. Gynecol. Endocrinol. 2021 37(1): 26–30. doi: 10.1080/09513590.2020.1779689.
  69. Rodrigues VD, Boaro BL, Laurindo LF, et al. Exploring the benefits of astaxanthin as a functional food ingredient: Its effects on oxidative stress and reproductive outcomes in women with PCOS - A systematic review and single-arm meta-analysis of randomized clinical trials. Naunyn. Schmiedebergs. Arch. Pharmacol. 2025 398(2). doi: 10.1007/S00210-024-03432-W.
  70. Guerreiro G, Deon M, Becker GS, et al. Neuroprotective effects of L-carnitine towards oxidative stress and inflammatory processes: a review of its importance as a therapeutic drug in some disorders. Metab. Brain Dis. 2025 40(2). doi: 10.1007/S11011-025-01545-6.
  71. Gautam R, Maan P, Jyoti A, et al. The Role of Lifestyle Interventions in PCOS Management: A Systematic Review. Nutr. 2025, Vol. 17, Page 310. 2025 17(2): 310. doi: 10.3390/NU17020310.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.