Резистом птицеводческих хозяйств: от генов до экосистем
- Авторы: Чемисова О.С.1, Седова Д.А.1, Середа А.А.1, Гордеева Ю.П.1
-
Учреждения:
- Донской государственный технический университет
- Раздел: Метагеномика экосистем
- Статья получена: 10.10.2025
- Статья одобрена: 23.11.2025
- Статья опубликована: 26.12.2025
- URL: https://journals.eco-vector.com/ecolgenet/article/view/692757
- DOI: https://doi.org/10.17816/ecogen692757
- ID: 692757
Цитировать
Полный текст
Аннотация
Интенсивное применение антимикробных препаратов в промышленном птицеводстве способствует формированию и поддержанию обширного резистома – совокупности генов устойчивости к антибиотикам в микробных сообществах. В данном обзоре систематизированы современные данные о структуре, разнообразии и циркуляции генов антибиотикорезистентности в птицеводческих хозяйствах в контексте концепции «Единое здоровье». Эта работа предлагает уникальный, системный взгляд на птицеферму как на целостную экосистему циркуляции генов устойчивости.
Метагеномные исследования выявили более 600 типов генов резистентности в микробиоме птиц, детерминирующих устойчивость к 25 классам антибиотиков. Наиболее распространенными являются гены устойчивости к тетрациклинам (tetA, tetB, tetM), β-лактамам (blaTEM, blaCTX-M, blaCMY-2), макролидам (ermB, ermA) и фторхинолонам (qnrS, qnrB), аминогликозидам. Особую обеспокоенность вызывает выявление генов карбапенемаз (blaNDM, blaOXA-48) и устойчивости к тигециклину (tetX4) и колистину (mcr-1) – препаратам резерва. Концентрация генов резистентности в птичьем помете достигает 10¹⁶ копий на грамм, что превышает показатели других типов животноводческих отходов.
Детально описаны экологические резервуары: кишечный микробиом, инкубаторы, биопленки в системах водоснабжения, подстилка и производственные поверхности. Основные механизмы диссеминации включают вертикальную передачу через инкубаторы, горизонтальный перенос генов посредством плазмид и транспозонов и массовое распространение через помет в агроэкосистемы. Показана роль ко-селекции с генами устойчивости к тяжелым металлам и биоцидам в поддержании резистома без антибиотического давления.
Обзор подчеркивает необходимость комплексного подхода к контролю резистома, включающего оптимизацию применения антимикробных препаратов, совершенствование биобезопасности, альтернативные стратегии профилактики и эффективную обработку отходов птицеводства для минимизации экологических и эпидемиологических рисков.
Полный текст
Об авторах
Ольга Сергеевна Чемисова
Донской государственный технический университет
Email: chemisova@inbox.ru
ORCID iD: 0000-0002-4059-2878
SPIN-код: 1129-7436
кандидат биологических наук, доцент кафедры "Биоинженерия"
Россия, 344003, Россия, г. Ростов-на-Дону, пл. Гагарина,1, корп. 6Дарья Андреевна Седова
Донской государственный технический университет
Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN-код: 6197-7220
старший преподаватель кафедры "Биоинженерия"
Россия, 344003, Россия, г. Ростов-на-Дону, пл. Гагарина,1, корп. 6Алина Александровна Середа
Донской государственный технический университет
Автор, ответственный за переписку.
Email: alina.sereda2001@mail.ru
ORCID iD: 0009-0007-2130-0175
SPIN-код: 2638-2848
аспирант, факультет "Биоинженерии и ветеринарной медицины"
Россия, 344003, Россия, г. Ростов-на-Дону, пл. Гагарина,1, корп. 6Юлия Петровна Гордеева
Донской государственный технический университет
Email: GordeevaYP@yandex.ru
ORCID iD: 0009-0003-0888-2861
SPIN-код: 1440-6753
аспирант, факультет "Биоинженерии и ветеринарной медицины"
Россия, 344003, Россия, г. Ростов-на-Дону, пл. Гагарина,1, корп. 6Список литературы
- Mulchandani R, Wang Y, Gilbert M, Van Boeckel TP. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health. 2023;3(2):e0001305. doi: 10.1371/journal.pgph.0001305
- Acosta A, Tirkaso W, Nicolli F, et al. The future of antibiotic use in livestock. Nat Commun. 2025;16:2469. doi: 10.1038/s41467-025-56825-7
- Маилян ЭС Проблема использования антибиотиков в животноводстве и пути контроля микробной антибиотикорезистентности. БИО. 2021;12(255): 4-16. EDN PRGLPY.
- United Nations General Assembly (UNGA). Political declaration of the high-level meeting on antimicrobial resistance. New York, NY: United Nations; 2024.
- Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718-733. doi: 10.1128/CMR.00002-11
- Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140083. doi: 10.1098/rstb.2014.0083
- Matuszewska M, Murray GGR, Ba X, et al. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. Elife. 2022;11:e74819. doi: 10.7554/eLife.74819
- World Health Organization. Global action plan on antimicrobial resistance. Geneva: World Health Organization; 2015.
- Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175-186. doi: 10.1038/nrmicro1614
- Szoke Z, Fauszt P, Mikolas M, et al. Comprehensive analysis of antimicrobial resistance dynamics among broiler and duck intensive production systems. Sci Rep. 2025;15:4673. doi: 10.1038/s41598-025-89432-z
- Blaak H, van Hoek AHAM, Hamidjaja RA, et al. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment. PLoS One. 2015;10(8):e0135402. doi: 10.1371/journal.pone.0135402
- Murray LM, Hayes A, Snape J, et al. Co-selection for antibiotic resistance by environmental contaminants. npj Antimicrob Resist. 2024;2:9. doi: 10.1038/s44259-024-00026-7
- Hu Y, Gao GF, Zhu B. The antibiotic resistome: gene flow in environments, animals and human beings. Front Med. 2017;11(2):161-168. doi: 10.1007/s11684-017-0531-x
- Fajardo A, Martínez-Martín N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One. 2008;3(2):e1619. doi: 10.1371/journal.pone.0001619
- Forsberg KJ, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337(6098):1107-1111. doi: 10.1126/science.1220761
- Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:54. doi: 10.1186/s40168-016-0199-5
- Scicchitano D, Babbi G, Palladino G, et al. Routes of dispersion of antibiotic resistance genes from the poultry farm system. Sci Total Environ. 2024;912:169086. doi: 10.1016/j.scitotenv.2023.169086
- Baghdadi M, Brassard P, Godbout S, et al. Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes' Emission. Microorganisms. 2023;11(7):1797. doi: 10.3390/microorganisms11071779
- Luiken REC, Van Gompel L, Munk P, et al; EFFORT consortium. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J Antimicrob Chemother. 2019;74(9):2596-2604. doi: 10.1093/jac/dkz235
- Roberts MC, Schwarz S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. J Environ Qual. 2016;45(2):576-592. doi: 10.2134/jeq2015.04.0207
- Smoglica C, Farooq M, Ruffini F, Marsilio F, Di Francesco CE. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics (Basel). 2023;12(9):1461. doi: 10.3390/antibiotics12091461
- Elkenany R, Elsayed M, Zakaria A, et al. Epidemiology of potential source, risk attribution of Clostridium perfringens from Egyptian broiler farms and genetic diversity of multidrug resistance strains. Sci Rep. 2025;15:28638. doi: 10.1038/s41598-025-12519-0
- Kador SM, Islam KT, Rubaiyat RN, et al. Abundance and transmission of antibiotic resistance and virulence genes through mobile genetic elements in integrated chicken and fish farming system. Sci Rep. 2025;15:20953. doi: 10.1038/s41598-025-92921-w
- Gholami Ahangaran M, Zinsaz P, Pourmahdi O, Ahmadi-Dastgerdi A, Ostadpour M, Soltani M. Tetracycline resistance genes in Escherichia coli strains isolated from biofilm of drinking water system in poultry farms. Acta Vet Eurasia. 2021;48(1):64-68. doi: 10.5152/actavet.2021.20074
- Sasoon A, Nikkhahi F, Javadi A, et al. Biofilm Formation and Antibiotic Resistance Genes of Escherichia coli From Poultry Farms and Clinical Samples. Vet Med Sci. 2025;11(5):e70510. doi: 10.1002/vms3.70510
- Kuznetsova MV, Afanasievskaya EV, Pokatilova MO, Kruglova AA, Gorovitz ES. Diversity and antibiotic resistance of enterobacteria isolated from broilers in a poultry farm of perm krai: а 14-year study. Sel’skokhozyaistvennaya biologiya. 2019; 54(4):805-819. doi: 10.15389/agrobiology.2019.4.805rus EDN: PWCAQV
- Sibirkina MM, Nityaga IM, Smotrina JV. Еvaluation of the frequency and spec trum of antibiotic resistance in Е. coli and Еnterococcus spp., isolated from food products. Russian Journal «Problems of Veterinary Sanitation, Hygiene and Ecology». 2022;(3):299-304. doi: 10.36871/vet.san.hyg.ecol.202203003 EDN: HMZTSA
- Метлева АС. Содержание антибиотико-устойчивых потенциально-патогенных микроорганизмов во внешней среде животноводческих комплексов. В: Актуальные научно-технические средства и сельскохозяйственные проблемы. Кузбасская ГСХА; 2021:311-318. EDN: VNZAOG
- Khalid N, Bukhari SM, Ali W, Sheikh AA. Antibiotic resistance dynamics of some common probiotic Lactobacillus species and avian pathogenic Escherichia coli in colibacillosis-diseased versus healthy broiler chickens. Vet Res Forum. 2025;16(7):391-397. doi: 10.30466/vrf.2025.2037056.4381
- Montero L, Medina-Santana JL, Ishida M, Sauders B, Trueba G, Vinueza-Burgos C. Transmission of dominant strains of Campylobacter jejuni and Campylobacter coli between farms and retail stores in Ecuador: Genetic diversity and antimicrobial resistance. PLoS One. 2024;19(9):e0308030. doi: 10.1371/journal.pone.0308030
- Korves AM, Sardogan B, Oelgeschläger K, et al. Importance of chick origin in introducing multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae into an organic broiler farm. Microbiol Res. 2025;301:128291. doi: 10.1016/j.micres.2025.128291
- Tyurina DG, Gorfunkel EP, Filippova VV, et.al. The development of antimicrobial resistance in broilers affected by veterinary antimicrobials and a probiotic administration. Agrarian science. 2024;(3):85-91. doi: 10.32634/0869-8155-2024-380-3-85-91 EDN: XLPIWJ
- Shirokikh IG, Bokov NA, Zavyalova NE, Ashikhmina TYa. Compost from chicken manure as a source of antibiotic resistance of soil actinomycetes. Theoretical and Applied Ecology. 2023;(1):101-109. doi: 10.25750/1995-4301-2023-1-101-109 EDN: OJQFTQ
- Kürekci C, Lu X, Sahin S, et al. Detection and Whole-Genome Analysis of tigecycline resistant Escherichia coli in poultry and meat samples in Türkiye. Poult Sci. 2025;104(2):104707. doi: 10.1016/j.psj.2024.104707
- Pan Y, Zeng J, Zhang L, et al. The fate of antibiotics and antibiotic resistance genes in Large-Scale chicken farm Environments: Preliminary view of the performance of National veterinary Antimicrobial use reduction Action in Guangdong, China. Environ Int. 2024;191:108974. doi: 10.1016/j.envint.2024.108974
- Jiang C, Yang J, Xiao G, Xiao N, Hu J, Yang Y, Sun Z, Li Y. The ISVsa3-ORF2-abh-tet(X4) circular intermediate-mediated transmission of tigecycline resistance in Escherichia coli isolates from duck farms. Front Cell Infect Microbiol. 2024;14:1444031. doi: 10.3389/fcimb.2024.1444031
- Dierikx CM, van der Goot JA, Smith HE, Kant A, Mevius DJ. Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study. PLoS One. 2013;8(11):e79005. doi: 10.1371/journal.pone.0079005
- Ahmed S, Das T, Nath C, et al. Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens. J Microbiol. 2025;63(4):e2412009. doi: 10.71150/jm.2412009
- Nehru BS, Vasu J, Vivek Srinivas M, Muthaiah M, Mukhopadhyay HK. Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. Curr Microbiol. 2025;82(9):442. doi: 10.1007/s00284-025-04416-6
- Kuznetsova MV, Pospelova YuS, Mihailovskaya VS, Kochergina DA.. Antibiotic resistance and zoonotic potential of Escherichia coli strains isolated from poultry agro-industrial complex. Russian Agricultural Sciences. 2025;(2):41-49. doi: 10.31857/S2500262725020082 EDN: DEQLIU
- Pospelova JS, Erjavec SM, Kuznetsova MV. The causative agents of colibacillosis in poultry: carriers of genes associated with extraintestinal and intestinal pathogenic Escherichia coli. Sel'skokhozyaistvennaya biologiya. 2022;57(2):291-305. doi: 10.15389/agrobiology.2022.2.291rus EDN: EMXBTY
- Makavchik SA, Pushkina VS, Krotova AL. Detection of Escherichia coli with beta-lactamase production and problems of antibiotic therapy in poultry farming. International bulletin of Veterinary Medicine. 2022;(3):37-42. doi: 10.52419/issn2072-2419.2022.3.37 EDN: VSXXIM
- Kuleshov KV, Pavlova AS, Kremleva A. et al. Genomic diversity and analysis of resistance determinants of Salmonella enterica subspecies enterica serovar Kentucky isolated in Russia. Journal of microbiology, epidemiology and immunobiology. 2024;101(3):303-314. (In Russian). doi: 10.36233/0372-9311-488 EDN: OWLGTW
- Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics (Basel). 2024;13(9):808. doi: 10.3390/antibiotics13090808
- Chalmers G, Cobean J, Snyder RP, Barta JR, Boerlin P. Extended-spectrum cephalosporin resistance in Escherichia coli from broiler chickens raised with or without antibiotics in Ontario, Canada. Vet Microbiol. 2021;258:109116. doi: 10.1016/j.vetmic.2021.109116
- Apostolakos I, Mughini-Gras L, Fasolato L, Piccirillo A. Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS One. 2019;14(5):e0217174. doi: 10.1371/journal.pone.0217174
- Laconi A, Tolosi R, Chirollo C, et al. From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Antibiotics (Basel). 2025;14(6):604. doi: 10.3390/antibiotics14060604
- Kurittu P, Khakipoor B, Aarnio M, et al. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Front Microbiol. 2021;12:592291. doi: 10.3389/fmicb.2021.592291
- Zhai R, Fu B, Shi X, et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ Int. 2020;139:105715. doi: 10.1016/j.envint.2020.105715
- Tayh G, Nsibi F, Abdallah K, et al. Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia. Antibiotics (Basel). 2025;14(9):931. doi: 10.3390/antibiotics14090931
- Tang M, Zhou Q, Zhang X, Tang X, Lu J, Gao Y. Research note: Emergence of blaNDM-13 producing Escherichia coli from a broiler chicken and farm environment in Jiangsu Province, China. Poult Sci. 2025;104(11):105790. doi: 10.1016/j.psj.2025.105790
- Zhou Y, Wu K, Lin H, et al. Whole genome sequencing of Salmonella in poultry from China reveals the presence of blaNDM-5 in different serotypes. Poult Sci. 2025;104(11):105647. doi: 10.1016/j.psj.2025.105647
- Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med. 2016;6(10):a025395. doi: 10.1101/cshperspect.a025395
- Meng J, Wang W, Ding J, et al. The synergy effect of matrine and berberine hydrochloride on treating colibacillosis caused by an avian highly pathogenic multidrug-resistant Escherichia coli. Poult Sci. 2024;103(10):104151. doi: 10.1016/j.psj.2024.104151
- El-Tarabili RM, Enany ME, Alenzi AM, et al. Unveiling resistance patterns, kmt1 sequence analyses, virulence traits, and antibiotic resistance genes of multidrug-resistant Pasteurella multocida retrieved from poultry and rabbits. Sci Rep. 2025;15:5348. doi: 10.1038/s41598-025-89900-6
- Guéneau V, Jiménez G, Castex M, Briandet R. Insights into the genomic and phenotypic characteristics of Bacillus spp. strains isolated from biofilms in broiler farms. Appl Environ Microbiol. 2024;90(9):e0066324. doi: 10.1128/aem.00663-24
- Islam S, Urmi UL, Rana M, et al. High abundance of the colistin resistance gene mcr-1 in chicken gut-bacteria in Bangladesh. Sci Rep. 2020;10:17292. doi: 10.1038/s41598-020-74402-4
- Saeed MA, Asif H, Ehtisham-Ul-Haque S, et al. Detection and risk factor analysis of avian colibacillosis associated with colistin-resistant Escherichia coli and Klebsiella pneumoniae. Front Vet Sci. 2025;12:1612542. doi: 10.3389/fvets.2025.1612542
- Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438-445. doi: 10.1016/j.tim.2014.04.007
- Hao H, Cheng G, Iqbal Z, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol. 2014;5:288. doi: 10.3389/fmicb.2014.00288
- Shen C, He M, Zhang J, Liu J, Su J, Dai J. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Ecotoxicol Environ Saf. 2023;263:115367. doi: 10.1016/j.ecoenv.2023.115367
- Teymurazov MG, Kartsev NN, Abaimova AA, Tazina OI, Skryabin YP, Khokhlava OE. Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia. Microorganisms. 2025;13(4):816. doi: 10.3390/microorganisms13040816
- Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6-7):298-304. doi: 10.1016/j.ijmm.2013.02.001
- Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003
- Chalmers G, Cobean J, Snyder RP, Barta JR, Boerlin P. Extended-spectrum cephalosporin resistance in Escherichia coli from broiler chickens raised with or without antibiotics in Ontario, Canada. Vet Microbiol. 2021;258:109116. doi: 10.1016/j.vetmic.2021.109116
- Abraham A, Mtewa AG, Chiutula C, et al. Prevalence of Antibiotic Resistance Bacteria in Manure, Soil, and Vegetables in Urban Blantyre, Malawi, from a Farm-to-Fork Perspective. Int J Environ Res Public Health. 2025;22(8):1273. doi: 10.3390/ijerph22081273
- Hernández-Villamizar S, Bonilla JA, García-Vega AS, et al. Improving health and productivity in laying hens with the phage cocktail SalmoFree®. Poult Sci. 2025;104(11):105638. doi: 10.1016/j.psj.2025.105638
- Yousef HMY, Hashad ME, Osman KM, et al. Surveillance of Escherichia coli in different types of chicken and duck hatcheries: one health outlook. Poult Sci. 2023;102(12):103108. doi: 10.1016/j.psj.2023.103108
- Leclercq SO, Bochereau P, Foubert I, et al. Persistence of commensal multidrug-resistant Escherichia coli in the broiler production pyramid is best explained by strain recirculation from the rearing environment. Front Microbiol. 2024;15:1406854. doi: 10.3389/fmicb.2024.1406854
- Robé C, Projahn M, Boll K, et al. Survival of highly related ESBL- and pAmpC- producing Escherichia coli in broiler farms identified before and after cleaning and disinfection using cgMLST. BMC Microbiol. 2024;24:143. doi: 10.1186/s12866-024-03292-7
- Krüger GI, Urbina F, Pardo-Esté C, et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms. 2025;13(8):1812. doi: 10.3390/microorganisms13081812
- Pin Viso N, Redondo E, Redondo L, et al. Could tannins be the right dietary alternative for replacing antibiotics as growth promoters in broiler chicken production? A comprehensive microbiota shift assessment in a commercial farm. Poult Sci. 2025;104(8):105260. doi: 10.1016/j.psj.2025.105260
- Barrero MAO, Varón-López M, Peñuela-Sierra LM. Competing microorganisms with exclusion effects against multidrug-resistant Salmonella Infantis in chicken litter supplemented with growth-promoting antimicrobials. Vet World. 2025;18(5):1127-1136. doi: 10.14202/vetworld.2025.1127-1136
- Williams AD, Rousham E, Neal AL, et al. Impact of contrasting poultry exposures on human, poultry, and wastewater antibiotic resistomes in Bangladesh. Microbiol Spectr. 2023;11(6):e0176323. doi: 10.1128/spectrum.01763-23
- Lopes EDS, de Souza LCA, Santaren KCF, Parente CET, Seldin L. Microbiome and Resistome in Poultry Litter-Fertilized and Unfertilized Agricultural Soils. Antibiotics (Basel). 2025;14(4):355. doi: 10.3390/antibiotics14040355
- Fučík J, Amrichová A, Brabcová K, et al. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. Environ Sci Pollut Res Int. 2024;31(13):20017-20032. doi: 10.1007/s11356-024-32492-x
- Seyoum MM, Ashworth AJ, Owens PR, Katuwal S, Lyte JM, Savin M. Leaching of antibiotic resistance genes and microbial assemblages following poultry litter applications in karst and non-karst landscapes. Sci Total Environ. 2024;934:172905. doi: 10.1016/j.scitotenv.2024.172905
- Bertelloni F, Cagnoli G, Bresciani F, et al. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms. Antibiotics (Basel). 2023;12(4):636. doi: 10.3390/antibiotics12040636
- Tawakol MM, Nabil NM, Samir A, et al. Role of migratory birds as a risk factor for the transmission of multidrug resistant Salmonella enterica and Escherichia coli to broiler poultry farms and its surrounding environment. BMC Res Notes. 2024;17:314. doi: 10.1186/s13104-024-06958-7
- Zhao Q, Jiang Z, Li T, et al. Current status and trends in antimicrobial use in food animals in China, 2018–2020. One Health Adv. 2023;1:29. doi: 10.1186/s44280-023-00029-5
- Shchepetkina SV. Antibiotics in poultry farming: cannot be banned be regulated. Ptitsevodstvo. 2019;(4):80-84. doi: 10.24411/9999-007А-2019-1039
- Zhen W, Zhu T, Wang P, et al. Effect of dietary Saccharomyces-derived prebiotic refined functional carbohydrates as antibiotic alternative on growth performance and intestinal health of broiler chickens reared in a commercial farm. Poult Sci. 2023;102(6):102671. doi: 10.1016/j.psj.2023.102671
- Ivanova OE, Panin AN, Karabanov SYu, Makarov DA, Akhmetzyanova AA, Gergel MA. Veterinary monitoring of antimicrobial resistance in the Russian Federation. Agrarnaya Nauka. 2021;347(4):7-11.
- Makarov DA, Karabanov SYu, Krylova EV, et al. Experience in using the AMRcloud online platform for veterinary monitoring of antibiotic resistance of zoonotic bacteria. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2020;22(1):53-59. doi: 10.36488/cmac.2020.1.53-59
Дополнительные файлы


