Poultry farm resistome: from genes to ecosystems



Cite item

Full Text

Abstract

The intensive application of antimicrobial agents in industrial poultry farming contributes to the formation and maintenance of an extensive resistome – the collection of antibiotic resistance genes within microbial communities. This review synthesizes current data on the structure, diversity, and circulation of antibiotic resistance genes in poultry production systems within the context of the “One Health” concept. It offers a unique, systemic perspective, viewing a poultry farm as an integrated ecosystem for the circulation of resistance genes.

Metagenomic studies have revealed over 600 types of resistance genes in the poultry microbiome, conferring resistance to 25 classes of antibiotics. The most prevalent genes confer resistance to tetracyclines (tetA, tetB, tetM), β-lactams (blaTEM, blaCTX-M, blaCMY-2), macrolides (ermB, ermA), fluoroquinolones (qnrS, qnrB), and aminoglycosides. Of particular concern is the detection of carbapenemase genes (blaNDM, blaOXA-48) and genes conferring resistance to last-resort drugs such as tigecycline (tetX4) and colistin (mcr-1). The concentration of resistance genes in poultry litter can reach 10¹⁶ copies per gram, exceeding levels found in other types of livestock waste.

The review details key ecological reservoirs, including the gut microbiome, hatcheries, biofilms in water systems, litter, and production surfaces. The primary dissemination mechanisms encompass vertical transmission via hatcheries, horizontal gene transfer mediated by plasmids and transposons, and large-scale dispersion through litter into agro-ecosystems. The role of co-selection with heavy metal and biocide resistance genes in maintaining the resistome in the absence of antibiotic pressure is highlighted.

This review emphasizes the necessity for an integrated approach to resistome control. This includes optimizing antimicrobial use, enhancing biosecurity measures, developing alternative prophylactic strategies, and implementing effective waste management protocols to mitigate environmental and epidemiological risks.

Full Text

Restricted Access

About the authors

Olga S. Chemisova

Don State Technical University

Email: chemisova@inbox.ru
ORCID iD: 0000-0002-4059-2878
SPIN-code: 1129-7436

Cand. Sci. (Biol.), Head of the laboratory "Collection of pathogenic microorganisms"

Russian Federation, building 6, 1 Gagarina Square, 344003, Rostov-on-Don, Russia

Darya A. Sedova

Don State Technical University

Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN-code: 6197-7220

Senior Lecturer, Department of Bioengineering

Russian Federation, building 6, 1 Gagarina Square, 344003, Rostov-on-Don, Russia

Alina A. Sereda

Don State Technical University

Author for correspondence.
Email: alina.sereda2001@mail.ru
ORCID iD: 0009-0007-2130-0175
SPIN-code: 2638-2848

Graduate Student, Faculty of Bioengineering and Veterinary Medicine

Russian Federation, building 6, 1 Gagarina Square, 344003, Rostov-on-Don, Russia

Yuliia P. Gordeeva

Don State Technical University

Email: GordeevaYP@yandex.ru
ORCID iD: 0009-0003-0888-2861
SPIN-code: 1440-6753

Graduate Student, Faculty of Bioengineering and Veterinary Medicine

Russian Federation, building 6, 1 Gagarina Square, 344003, Rostov-on-Don, Russia

References

  1. Mulchandani R, Wang Y, Gilbert M, Van Boeckel TP. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health. 2023;3(2):e0001305. doi: 10.1371/journal.pgph.0001305
  2. Acosta A, Tirkaso W, Nicolli F, et al. The future of antibiotic use in livestock. Nat Commun. 2025;16:2469. doi: 10.1038/s41467-025-56825-7
  3. Маилян ЭС Проблема использования антибиотиков в животноводстве и пути контроля микробной антибиотикорезистентности. БИО. 2021;12(255): 4-16. EDN PRGLPY.
  4. United Nations General Assembly (UNGA). Political declaration of the high-level meeting on antimicrobial resistance. New York, NY: United Nations; 2024.
  5. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718-733. doi: 10.1128/CMR.00002-11
  6. Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140083. doi: 10.1098/rstb.2014.0083
  7. Matuszewska M, Murray GGR, Ba X, et al. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. Elife. 2022;11:e74819. doi: 10.7554/eLife.74819
  8. World Health Organization. Global action plan on antimicrobial resistance. Geneva: World Health Organization; 2015.
  9. Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175-186. doi: 10.1038/nrmicro1614
  10. Szoke Z, Fauszt P, Mikolas M, et al. Comprehensive analysis of antimicrobial resistance dynamics among broiler and duck intensive production systems. Sci Rep. 2025;15:4673. doi: 10.1038/s41598-025-89432-z
  11. Blaak H, van Hoek AHAM, Hamidjaja RA, et al. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment. PLoS One. 2015;10(8):e0135402. doi: 10.1371/journal.pone.0135402
  12. Murray LM, Hayes A, Snape J, et al. Co-selection for antibiotic resistance by environmental contaminants. npj Antimicrob Resist. 2024;2:9. doi: 10.1038/s44259-024-00026-7
  13. Hu Y, Gao GF, Zhu B. The antibiotic resistome: gene flow in environments, animals and human beings. Front Med. 2017;11(2):161-168. doi: 10.1007/s11684-017-0531-x
  14. Fajardo A, Martínez-Martín N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One. 2008;3(2):e1619. doi: 10.1371/journal.pone.0001619
  15. Forsberg KJ, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337(6098):1107-1111. doi: 10.1126/science.1220761
  16. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:54. doi: 10.1186/s40168-016-0199-5
  17. Scicchitano D, Babbi G, Palladino G, et al. Routes of dispersion of antibiotic resistance genes from the poultry farm system. Sci Total Environ. 2024;912:169086. doi: 10.1016/j.scitotenv.2023.169086
  18. Baghdadi M, Brassard P, Godbout S, et al. Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes' Emission. Microorganisms. 2023;11(7):1797. doi: 10.3390/microorganisms11071779
  19. Luiken REC, Van Gompel L, Munk P, et al; EFFORT consortium. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J Antimicrob Chemother. 2019;74(9):2596-2604. doi: 10.1093/jac/dkz235
  20. Roberts MC, Schwarz S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. J Environ Qual. 2016;45(2):576-592. doi: 10.2134/jeq2015.04.0207
  21. Smoglica C, Farooq M, Ruffini F, Marsilio F, Di Francesco CE. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics (Basel). 2023;12(9):1461. doi: 10.3390/antibiotics12091461
  22. Elkenany R, Elsayed M, Zakaria A, et al. Epidemiology of potential source, risk attribution of Clostridium perfringens from Egyptian broiler farms and genetic diversity of multidrug resistance strains. Sci Rep. 2025;15:28638. doi: 10.1038/s41598-025-12519-0
  23. Kador SM, Islam KT, Rubaiyat RN, et al. Abundance and transmission of antibiotic resistance and virulence genes through mobile genetic elements in integrated chicken and fish farming system. Sci Rep. 2025;15:20953. doi: 10.1038/s41598-025-92921-w
  24. Gholami Ahangaran M, Zinsaz P, Pourmahdi O, Ahmadi-Dastgerdi A, Ostadpour M, Soltani M. Tetracycline resistance genes in Escherichia coli strains isolated from biofilm of drinking water system in poultry farms. Acta Vet Eurasia. 2021;48(1):64-68. doi: 10.5152/actavet.2021.20074
  25. Sasoon A, Nikkhahi F, Javadi A, et al. Biofilm Formation and Antibiotic Resistance Genes of Escherichia coli From Poultry Farms and Clinical Samples. Vet Med Sci. 2025;11(5):e70510. doi: 10.1002/vms3.70510
  26. Kuznetsova MV, Afanasievskaya EV, Pokatilova MO, Kruglova AA, Gorovitz ES. Diversity and antibiotic resistance of enterobacteria isolated from broilers in a poultry farm of perm krai: а 14-year study. Sel’skokhozyaistvennaya biologiya. 2019; 54(4):805-819. doi: 10.15389/agrobiology.2019.4.805rus EDN: PWCAQV
  27. Sibirkina MM, Nityaga IM, Smotrina JV. Еvaluation of the frequency and spec trum of antibiotic resistance in Е. coli and Еnterococcus spp., isolated from food products. Russian Journal «Problems of Veterinary Sanitation, Hygiene and Ecology». 2022;(3):299-304. doi: 10.36871/vet.san.hyg.ecol.202203003 EDN: HMZTSA
  28. Метлева АС. Содержание антибиотико-устойчивых потенциально-патогенных микроорганизмов во внешней среде животноводческих комплексов. В: Актуальные научно-технические средства и сельскохозяйственные проблемы. Кузбасская ГСХА; 2021:311-318. EDN: VNZAOG
  29. Khalid N, Bukhari SM, Ali W, Sheikh AA. Antibiotic resistance dynamics of some common probiotic Lactobacillus species and avian pathogenic Escherichia coli in colibacillosis-diseased versus healthy broiler chickens. Vet Res Forum. 2025;16(7):391-397. doi: 10.30466/vrf.2025.2037056.4381
  30. Montero L, Medina-Santana JL, Ishida M, Sauders B, Trueba G, Vinueza-Burgos C. Transmission of dominant strains of Campylobacter jejuni and Campylobacter coli between farms and retail stores in Ecuador: Genetic diversity and antimicrobial resistance. PLoS One. 2024;19(9):e0308030. doi: 10.1371/journal.pone.0308030
  31. Korves AM, Sardogan B, Oelgeschläger K, et al. Importance of chick origin in introducing multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae into an organic broiler farm. Microbiol Res. 2025;301:128291. doi: 10.1016/j.micres.2025.128291
  32. Tyurina DG, Gorfunkel EP, Filippova VV, et.al. The development of antimicrobial resistance in broilers affected by veterinary antimicrobials and a probiotic administration. Agrarian science. 2024;(3):85-91. doi: 10.32634/0869-8155-2024-380-3-85-91 EDN: XLPIWJ
  33. Shirokikh IG, Bokov NA, Zavyalova NE, Ashikhmina TYa. Compost from chicken manure as a source of antibiotic resistance of soil actinomycetes. Theoretical and Applied Ecology. 2023;(1):101-109. doi: 10.25750/1995-4301-2023-1-101-109 EDN: OJQFTQ
  34. Kürekci C, Lu X, Sahin S, et al. Detection and Whole-Genome Analysis of tigecycline resistant Escherichia coli in poultry and meat samples in Türkiye. Poult Sci. 2025;104(2):104707. doi: 10.1016/j.psj.2024.104707
  35. Pan Y, Zeng J, Zhang L, et al. The fate of antibiotics and antibiotic resistance genes in Large-Scale chicken farm Environments: Preliminary view of the performance of National veterinary Antimicrobial use reduction Action in Guangdong, China. Environ Int. 2024;191:108974. doi: 10.1016/j.envint.2024.108974
  36. Jiang C, Yang J, Xiao G, Xiao N, Hu J, Yang Y, Sun Z, Li Y. The ISVsa3-ORF2-abh-tet(X4) circular intermediate-mediated transmission of tigecycline resistance in Escherichia coli isolates from duck farms. Front Cell Infect Microbiol. 2024;14:1444031. doi: 10.3389/fcimb.2024.1444031
  37. Dierikx CM, van der Goot JA, Smith HE, Kant A, Mevius DJ. Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study. PLoS One. 2013;8(11):e79005. doi: 10.1371/journal.pone.0079005
  38. Ahmed S, Das T, Nath C, et al. Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens. J Microbiol. 2025;63(4):e2412009. doi: 10.71150/jm.2412009
  39. Nehru BS, Vasu J, Vivek Srinivas M, Muthaiah M, Mukhopadhyay HK. Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. Curr Microbiol. 2025;82(9):442. doi: 10.1007/s00284-025-04416-6
  40. Kuznetsova MV, Pospelova YuS, Mihailovskaya VS, Kochergina DA.. Antibiotic resistance and zoonotic potential of Escherichia coli strains isolated from poultry agro-industrial complex. Russian Agricultural Sciences. 2025;(2):41-49. doi: 10.31857/S2500262725020082 EDN: DEQLIU
  41. Pospelova JS, Erjavec SM, Kuznetsova MV. The causative agents of colibacillosis in poultry: carriers of genes associated with extraintestinal and intestinal pathogenic Escherichia coli. Sel'skokhozyaistvennaya biologiya. 2022;57(2):291-305. doi: 10.15389/agrobiology.2022.2.291rus EDN: EMXBTY
  42. Makavchik SA, Pushkina VS, Krotova AL. Detection of Escherichia coli with beta-lactamase production and problems of antibiotic therapy in poultry farming. International bulletin of Veterinary Medicine. 2022;(3):37-42. doi: 10.52419/issn2072-2419.2022.3.37 EDN: VSXXIM
  43. Kuleshov KV, Pavlova AS, Kremleva A. et al. Genomic diversity and analysis of resistance determinants of Salmonella enterica subspecies enterica serovar Kentucky isolated in Russia. Journal of microbiology, epidemiology and immunobiology. 2024;101(3):303-314. (In Russian). doi: 10.36233/0372-9311-488 EDN: OWLGTW
  44. Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics (Basel). 2024;13(9):808. doi: 10.3390/antibiotics13090808
  45. Chalmers G, Cobean J, Snyder RP, Barta JR, Boerlin P. Extended-spectrum cephalosporin resistance in Escherichia coli from broiler chickens raised with or without antibiotics in Ontario, Canada. Vet Microbiol. 2021;258:109116. doi: 10.1016/j.vetmic.2021.109116
  46. Apostolakos I, Mughini-Gras L, Fasolato L, Piccirillo A. Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS One. 2019;14(5):e0217174. doi: 10.1371/journal.pone.0217174
  47. Laconi A, Tolosi R, Chirollo C, et al. From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Antibiotics (Basel). 2025;14(6):604. doi: 10.3390/antibiotics14060604
  48. Kurittu P, Khakipoor B, Aarnio M, et al. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Front Microbiol. 2021;12:592291. doi: 10.3389/fmicb.2021.592291
  49. Zhai R, Fu B, Shi X, et al. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ Int. 2020;139:105715. doi: 10.1016/j.envint.2020.105715
  50. Tayh G, Nsibi F, Abdallah K, et al. Phenotypic and Molecular Study of Multidrug-Resistant Escherichia coli Isolates Expressing Diverse Resistance and Virulence Genes from Broilers in Tunisia. Antibiotics (Basel). 2025;14(9):931. doi: 10.3390/antibiotics14090931
  51. Tang M, Zhou Q, Zhang X, Tang X, Lu J, Gao Y. Research note: Emergence of blaNDM-13 producing Escherichia coli from a broiler chicken and farm environment in Jiangsu Province, China. Poult Sci. 2025;104(11):105790. doi: 10.1016/j.psj.2025.105790
  52. Zhou Y, Wu K, Lin H, et al. Whole genome sequencing of Salmonella in poultry from China reveals the presence of blaNDM-5 in different serotypes. Poult Sci. 2025;104(11):105647. doi: 10.1016/j.psj.2025.105647
  53. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med. 2016;6(10):a025395. doi: 10.1101/cshperspect.a025395
  54. Meng J, Wang W, Ding J, et al. The synergy effect of matrine and berberine hydrochloride on treating colibacillosis caused by an avian highly pathogenic multidrug-resistant Escherichia coli. Poult Sci. 2024;103(10):104151. doi: 10.1016/j.psj.2024.104151
  55. El-Tarabili RM, Enany ME, Alenzi AM, et al. Unveiling resistance patterns, kmt1 sequence analyses, virulence traits, and antibiotic resistance genes of multidrug-resistant Pasteurella multocida retrieved from poultry and rabbits. Sci Rep. 2025;15:5348. doi: 10.1038/s41598-025-89900-6
  56. Guéneau V, Jiménez G, Castex M, Briandet R. Insights into the genomic and phenotypic characteristics of Bacillus spp. strains isolated from biofilms in broiler farms. Appl Environ Microbiol. 2024;90(9):e0066324. doi: 10.1128/aem.00663-24
  57. Islam S, Urmi UL, Rana M, et al. High abundance of the colistin resistance gene mcr-1 in chicken gut-bacteria in Bangladesh. Sci Rep. 2020;10:17292. doi: 10.1038/s41598-020-74402-4
  58. Saeed MA, Asif H, Ehtisham-Ul-Haque S, et al. Detection and risk factor analysis of avian colibacillosis associated with colistin-resistant Escherichia coli and Klebsiella pneumoniae. Front Vet Sci. 2025;12:1612542. doi: 10.3389/fvets.2025.1612542
  59. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438-445. doi: 10.1016/j.tim.2014.04.007
  60. Hao H, Cheng G, Iqbal Z, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol. 2014;5:288. doi: 10.3389/fmicb.2014.00288
  61. Shen C, He M, Zhang J, Liu J, Su J, Dai J. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Ecotoxicol Environ Saf. 2023;263:115367. doi: 10.1016/j.ecoenv.2023.115367
  62. Teymurazov MG, Kartsev NN, Abaimova AA, Tazina OI, Skryabin YP, Khokhlava OE. Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia. Microorganisms. 2025;13(4):816. doi: 10.3390/microorganisms13040816
  63. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6-7):298-304. doi: 10.1016/j.ijmm.2013.02.001
  64. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003
  65. Chalmers G, Cobean J, Snyder RP, Barta JR, Boerlin P. Extended-spectrum cephalosporin resistance in Escherichia coli from broiler chickens raised with or without antibiotics in Ontario, Canada. Vet Microbiol. 2021;258:109116. doi: 10.1016/j.vetmic.2021.109116
  66. Abraham A, Mtewa AG, Chiutula C, et al. Prevalence of Antibiotic Resistance Bacteria in Manure, Soil, and Vegetables in Urban Blantyre, Malawi, from a Farm-to-Fork Perspective. Int J Environ Res Public Health. 2025;22(8):1273. doi: 10.3390/ijerph22081273
  67. Hernández-Villamizar S, Bonilla JA, García-Vega AS, et al. Improving health and productivity in laying hens with the phage cocktail SalmoFree®. Poult Sci. 2025;104(11):105638. doi: 10.1016/j.psj.2025.105638
  68. Yousef HMY, Hashad ME, Osman KM, et al. Surveillance of Escherichia coli in different types of chicken and duck hatcheries: one health outlook. Poult Sci. 2023;102(12):103108. doi: 10.1016/j.psj.2023.103108
  69. Leclercq SO, Bochereau P, Foubert I, et al. Persistence of commensal multidrug-resistant Escherichia coli in the broiler production pyramid is best explained by strain recirculation from the rearing environment. Front Microbiol. 2024;15:1406854. doi: 10.3389/fmicb.2024.1406854
  70. Robé C, Projahn M, Boll K, et al. Survival of highly related ESBL- and pAmpC- producing Escherichia coli in broiler farms identified before and after cleaning and disinfection using cgMLST. BMC Microbiol. 2024;24:143. doi: 10.1186/s12866-024-03292-7
  71. Krüger GI, Urbina F, Pardo-Esté C, et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms. 2025;13(8):1812. doi: 10.3390/microorganisms13081812
  72. Pin Viso N, Redondo E, Redondo L, et al. Could tannins be the right dietary alternative for replacing antibiotics as growth promoters in broiler chicken production? A comprehensive microbiota shift assessment in a commercial farm. Poult Sci. 2025;104(8):105260. doi: 10.1016/j.psj.2025.105260
  73. Barrero MAO, Varón-López M, Peñuela-Sierra LM. Competing microorganisms with exclusion effects against multidrug-resistant Salmonella Infantis in chicken litter supplemented with growth-promoting antimicrobials. Vet World. 2025;18(5):1127-1136. doi: 10.14202/vetworld.2025.1127-1136
  74. Williams AD, Rousham E, Neal AL, et al. Impact of contrasting poultry exposures on human, poultry, and wastewater antibiotic resistomes in Bangladesh. Microbiol Spectr. 2023;11(6):e0176323. doi: 10.1128/spectrum.01763-23
  75. Lopes EDS, de Souza LCA, Santaren KCF, Parente CET, Seldin L. Microbiome and Resistome in Poultry Litter-Fertilized and Unfertilized Agricultural Soils. Antibiotics (Basel). 2025;14(4):355. doi: 10.3390/antibiotics14040355
  76. Fučík J, Amrichová A, Brabcová K, et al. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. Environ Sci Pollut Res Int. 2024;31(13):20017-20032. doi: 10.1007/s11356-024-32492-x
  77. Seyoum MM, Ashworth AJ, Owens PR, Katuwal S, Lyte JM, Savin M. Leaching of antibiotic resistance genes and microbial assemblages following poultry litter applications in karst and non-karst landscapes. Sci Total Environ. 2024;934:172905. doi: 10.1016/j.scitotenv.2024.172905
  78. Bertelloni F, Cagnoli G, Bresciani F, et al. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies (Musca domestica) Captured in Swine and Poultry Farms. Antibiotics (Basel). 2023;12(4):636. doi: 10.3390/antibiotics12040636
  79. Tawakol MM, Nabil NM, Samir A, et al. Role of migratory birds as a risk factor for the transmission of multidrug resistant Salmonella enterica and Escherichia coli to broiler poultry farms and its surrounding environment. BMC Res Notes. 2024;17:314. doi: 10.1186/s13104-024-06958-7
  80. Zhao Q, Jiang Z, Li T, et al. Current status and trends in antimicrobial use in food animals in China, 2018–2020. One Health Adv. 2023;1:29. doi: 10.1186/s44280-023-00029-5
  81. Shchepetkina SV. Antibiotics in poultry farming: cannot be banned be regulated. Ptitsevodstvo. 2019;(4):80-84. doi: 10.24411/9999-007А-2019-1039
  82. Zhen W, Zhu T, Wang P, et al. Effect of dietary Saccharomyces-derived prebiotic refined functional carbohydrates as antibiotic alternative on growth performance and intestinal health of broiler chickens reared in a commercial farm. Poult Sci. 2023;102(6):102671. doi: 10.1016/j.psj.2023.102671
  83. Ivanova OE, Panin AN, Karabanov SYu, Makarov DA, Akhmetzyanova AA, Gergel MA. Veterinary monitoring of antimicrobial resistance in the Russian Federation. Agrarnaya Nauka. 2021;347(4):7-11.
  84. Makarov DA, Karabanov SYu, Krylova EV, et al. Experience in using the AMRcloud online platform for veterinary monitoring of antibiotic resistance of zoonotic bacteria. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2020;22(1):53-59. doi: 10.36488/cmac.2020.1.53-59

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.