Melatonin in the pathogenesis of preeclampsia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The review presents the results of experimental studies that have revealed the molecular mechanisms underlying implantation and placentation controlled by cytokines, chemokines, adhesion molecules, hormones, as well as transcription and growth factors, and have indicated the key regulatory and protective role of melatonin. It has been shown that low production of the hormone and lack of its circadian rhythm underlie the disruption of endogenous antioxidant protection and contribute to oxidative stress leading to the development of preeclampsia. The necessity of using melatonin as a neuroimmunoendocrine marker of pathology is emphasized in this review article, which will allow for developing new approaches to its use for the prevention and treatment of preeclampsia, as well as its adverse consequences, such as obesity, type 2 diabetes mellitus, renal failure, and cardiovascular pathology.

Full Text

Restricted Access

About the authors

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

ORCID iD: 0000-0003-4456-2198
SPIN-code: 4444-4567
Scopus Author ID: 520074

MD, Dr. Sci. (Med.), Professor

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Igor M. Kvetnoy

Saint-Petersburg State Research Institute of Phthisiopulmonology; Saint-Petersburg State University

Author for correspondence.
ORCID iD: 0000-0001-7302-5581
ResearcherId: H-4882-2016

MD, PhD, DSci (Medicine),

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034; Saint Petersburg


  1. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–1112. doi: 10.1161/CIRCRESAHA.118.313276
  2. Jenabi E, Afshari M, Khazaei S. The association between preeclampsia and the risk of metabolic syndrome after delivery: a meta-analysis. J Matern-Fetal Neonat Med. 2021;34(19):3253−3258. doi: 10.1080/14767058.2019.1678138
  3. Armengaud JB, Yzydorczyk C, Siddeek B, et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168−176. doi: 10.1016/j.reprotox.2020.10.005
  4. Garovic VD, White WM, Vaughan L, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75(18):2323−2334. doi: 10.1016/j.jacc.2020.03.028
  5. Abramova MY, Churnosov MI. Modern concepts of etiology, pathogenesis and risk factors for preeclampsia. Journal of Obstetrics and Women’s Diseases. 2021;70(5):105–116. doi: 10.17816/JOWD77046
  6. Bakrania BA, Spradley FT, Drummond HA, et al. Preeclampsia: Linking placental ischemia with maternal endothelial and vascular dysfunction. Compr Physiol. 2021;11(1):1315–1349. doi: 10.1002/cphy.c200008
  7. Lim S, Li W, Kemper J, et al. Biomarkers and the prediction of adverse outcomes in preeclampsia: A systematic review and meta-analysis. Obstet Gynecol. 2021;137(1):72–81. doi: 10.1097/AOG.0000000000004149
  8. Jena MK, Sharma NR, Petitt M, et al. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 2020;10(6):953. doi: 10.3390/biom10060953
  9. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275−289. doi: 10.1038/s41581-019-0119-6
  10. Tamura H, Jozaki M, Tanabe M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21(3):1135. doi: 10.3390/ijms21031135
  11. Ashary N, Tiwari A, Modi D. Embryo implantation: War in times of love. Endocrinology. 2018;159(2):1188−1198. doi: 10.1210/en.2017-03082
  12. Zhu YQ, Yan XY, Li H, Zhang C. Insights into the pathogenesis of preeclampsia based on the features of placentation and tumorigenesis. Reprod Dev Med. 2021;5:97−106. doi: 10.4103/2096-2924.320886
  13. Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019;134−135:1–10. doi: 10.1016/j.jri.2019.07.004
  14. Hong K, Kim SH, Cha DH, Park HJ. Defective uteroplacental vascular remodeling in preeclampsia: Key molecular factors leading to long term cardiovascular disease. Int J Mol Sci. 2021;22(20):11202. doi: 10.3390/ijms222011202
  15. Chiarello DI, Abada C, Rojasa D, et al. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165354. doi: 10.1016/j.bbadis.2018.12.005
  16. Guerby P, Tasta O, Swiader A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861. doi: 10.1016/j.redox.2021.101861
  17. Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359(1):195–204. doi: 10.1016/j.yexcr.2017.07. 029
  18. Sutton EF, Gemmel M, Powers RW. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide. 2020,95:55–62. doi: 10.1016/j.niox.2019.11.006
  19. Hu X-Q, Zhang L. Hypoxia and mitochondrial dysfunction in pregnancy complications. Antioxidants (Basel). 2021;10(3):405. doi: 10.3390/antiox10030405
  20. Vangrieken P, Salwan Al-Nasiry S, Bast A, et al. Placental mitochondrial abnormalities in preeclampsia. Reprod Sci. 2021;28:2186–2199. doi: 10.1007/s43032-021-00464-y
  21. Stefańska K, Zieliński M, Jankowiak M, et al. Cytokine imprint in preeclampsia. Front Immunol. 2021;12:667841. doi: 10.3389/fimmu.2021.667841
  22. Nath MC, Cubro H, McCormick D.J, et al. Preeclamptic women have decreased circulating IL-10 (Interleukin-10) values at the time of preeclampsia diagnosis: systematic review and meta-analysis. Hypertension. 2020;76(6):1817–1827. doi: 10.1161/HYPERTENSIONAHA.120.15870
  23. Magatti M, Masserdotti A, Cargnoni A, et al. The role of B cells in PE pathophysiology: A potential target for perinatal cell-based therapy? Int J Mol Sci. 2021;22:3405. doi: 10.3390/ijms22073405
  24. Guney G, Taskin MI, Tokmak A. Increase of circulating inflammatory molecules in preeclampsia, an update. Eur Cytokine Netw. 2020;31(1):18−31. doi: 10.1684/ecn.2020.0443
  25. Sahu MB, Deepak V, Gonzale SK, et al. Decidual cells from women with preeclampsia exhibit inadequate decidualization and reduced sFlt1 suppression. Pregnancy Hypertens. 2018;15:64–71. doi: 10.1016/j.preghy.2018.11.003
  26. Huppertz B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165349. doi: 10.1016/j.bbadis.2018.11.024
  27. Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta. linked to preeclampsia. Bioinformation. 2021;17(1):240−248. doi: 10.6026/97320630017240
  28. Xu P, Ma Y, Wu H, Wang Y-L. Placenta-derived microRNAs in the pathophysiology of human pregnancy. Front Cell Dev Biol. 2021;9:646326 doi: 10.3389/fcell.2021.646326
  29. Sun N, Qin S, Zhang L, Shiguo S. Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 2021;19:100. doi: 10.1186/s12958-021-00783-4
  30. Wang Z, Yang R, Zhang J, et al. Role of extracellular vesicles in placental inflammation and local immune balance. Мediators inflamm. 2021:5558048. doi: 10.1155/2021/5558048
  31. Chuffa LGA, Lupi LA, Cucielo MS, et al. Melatonin promotes uterine and placental health: Potential molecular mechanisms. Int J Mol Sci. 2020;21(1):300. doi: 10.3390/ijms21010300
  32. Langston-Cox A, Marshall SA, Lu D, et al. Melatonin for the Management of Preeclampsia: A Review. Antioxidants (Basel). 2021;10(3):376. doi: 10.3390/antiox10030376
  33. Carlomagno G, Minini M, Tilotta M, Unfer V. From implantation to birth: Insight into molecular melatonin functions. Int J Mol Sci. 2018;19(9):2802. doi: 10.3390/ijms19092802
  34. Hannan NJ, Binder NK, Beard S, et al. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (SFLT) from primary trophoblast but does not rescue endothelial dysfunction: An evaluation of Its potential to treat preeclampsia. PLoS One. 2018;13(4):e0187082. doi: 10.1371/journal.pone.0187082
  35. Ramiro-Cortijo D, de la Calle M, Benitez V, et al. Maternal psychological and biological factors associated to gestational complications. J Pers Med. 2021;11(3):183. doi: 10.3390/jpm11030183
  36. Ferlazzo N, Andolina G, Cannata A, et al. Is melatonin the cornucopia of the 21st century? Antioxidants. 2020;9(11):1088. doi: 10.3390/antiox9111088
  37. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–166. doi: 10.1016/j.mce.2012.01.004
  38. Kvetnoy I, Ivanov D, Mironova E., et al. Melatonin as the cornerstone of neuroimmunoendocrinology. Int J Mol Sci. 2022;23:1835. DOI: 10.3390/ ijms23031835
  39. Yu K, Wang RX, Li MH, et al. Melatonin reduces androgen production and upregulates hem oxygenase-1 expression in granulosa cells from PCOS patients with hypoestrogenia and hyperandrogenia. Oxid Med Cell Longev. 2019:8218650. doi: 10.1155/2019/8218650
  40. Guo Y, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: A review of the current status. Aging (Albany NY). 2021;13(13):17930−17947. doi: 10.18632/aging.203231
  41. Olcese JM. Melatonin and female reproduction: An expanding universe. Front Endocrinol (Lausanne). 2020;11:85. doi: 10.3389/fendo.2020.0008511:85
  42. Rai S, Ghosh H. Modulation of human ovarian function by melatonin. Front Biosci (Elite Ed). 2021;13:140–157. doi: 10.2741/875
  43. Russo M, Forte G, Montanino Oliva M, et al. Melatonin and myo-inositol: Supporting reproduction from the oocyte to birth. Int J Mol Sci. 2021;22(16):8433. doi: 10.3390/ijms22168433
  44. Zhang S, Lin H, Kong S, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34(5);939–980. doi: 10.1016/j.mam.2012.12.011
  45. He C, Wang J, Li Y, et al. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation. J Pineal Res. 2015;58(3):300–309. doi: 10.1111/jpi.12216
  46. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–1767. DOI: 1038/nm.3012
  47. Bae H, Yang C, Lee J-Y, et al. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy. J Pineal Res. 2020;69(2):e12670. doi: 10.1111/jpi.12670
  48. Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 2008;45(1):50–60. doi: 10.1111/j.1600-079X.2008.00555.x
  49. Swarnakar S, Paul S, Singh LP, Reiter RJ. Matrix metalloproteinases in health and disease: regulation by Melatonin. J Pineal Res. 2011;50(1):8–20. doi: 10.1111/j.1600-079X.2010.00812.x
  50. Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, et al. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life. 2020;72(8):1560–1584. doi: 10.1002/iub.2287
  51. Uzun М, Gencer M, Turkon H, et al. Effects of melatonin on blood pressure, oxidative stress and placental expressions of TNFa, IL-6, VEGF and sFlt-1 in RUPP rat model of preeclampsiа. Arch Med Res. 2017;48(7):592−598. doi: 10.1016/j.arcmed.2017.08.007
  52. Waddel BJ, Wharfe MD, Crew RC, Mark PJ. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta. 2012;33(7):533–539. doi: 10.1016/j.placenta.2012.03.008
  53. Chitimus DM, Popescu MR, Voiculescu SE, et al. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules. 2020;10(9):1211. doi: 10.3390/biom10091211
  54. Sagrillo-Fagundes L, Salustiano EMA, Ruano R, et al. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pieal Res. 2018;65(4):e12520. doi: 10.1111/jpi.12520
  55. Ejaz H, Figaro JK, Woolner AMF, et al. Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Front Endocrinol. 2021;11:623038. doi: 10.3389/fendo.2020.623038
  56. Majidinia M, Sadeghpour A, Mehrzadi S, et al. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017;63(1):e12416. doi: 10.1111/jpi.12416
  57. Tang Y, Groom K, Chamley L, Chen Q. Melatonin, a potential therapeutic agent for preeclampsia, reduces the extrusion of toxic extracellular vesicles from preeclamptic placenta. Cells. 2021;10(8):1904. doi: 10.3390/cells10081904
  58. Reiter RJ, Ma O, Sharm R. Melatonin in mitochondria: Mitigating clear and present dangers. Physiology. 2020;35(2):86–95. doi: 10.1152/physiol.00034.2019
  59. Carrascal L, Nunez-Abades P, Ayala A, Cano M. Role of melatonin in the inflammatory process and its therapeutic potential. Curr Pharm Des. 2018;24(14):1563–1588. doi: 10.2174/1381612824666180426112832
  60. Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res. 2017:62(3). doi: 10.1111/jpi.12394
  61. Kopustinskiene DM, Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease. Pharmaceutics. 2021;13(2):129. doi: 10.3390/pharmaceutics13020129
  62. Pan X, Taylor MJ, Cohen E, et al. Circadian clock, time-restricted feeding and reproduction. Int J Mol Sci. 2020;21(3):831. doi: 10.3390/ijms21030831
  63. McCarthy R, Jungheim ES, Fay JC, et al. Riding the rhythm of melatonin through pregnancy to deliver on time. Front Endocrinol (Lausanne). 2019;10:616. doi: 10.3389/fendo.2019.00616
  64. Evsyukova II. The role of melatonin in prenatal ontogenesis. J Evol Biochim Physiol. 2021,57(1):33−43. doi: 10.31857/S0044452921010022
  65. Dou Y, Lin B, Cheng H, et al. The reduction of melatonin levels is associated with the development of preeclampsia: A meta-analysis. Hypertens Pregnancy. 2019;38(2):65−72. doi: 10.1080/10641955.2019.1581215
  66. Zeng K, Gao Y, Wan J, et al. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia. J Hum Hypertens. 2016;30(11):666–671. doi: 10.1038/jhh.2016.37
  67. Bouchlariotou S, Liakopoulos V, Giannopoulou M, et al. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm. Ren Fail. 2014;36(7):1001−1007. doi: 10.3109/0886022X.2014.926216
  68. Laste G, Silva AA, Gheno BR, Rychcik PM. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020. Chronobiol. 2021;38(2):168−181. doi: 10.1080/07420528.2020.1863975
  69. Berbets AM, Davydenko IS, Barbe AM, et al. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction. Reprod Sci. 2021;28(1):197−206. doi: 10.1007/s43032-020-00285-5
  70. Forrestel AC, Miedlich SU, Yurcheshen M, et al. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808−822. doi: 10.1007/s00125-016-4175-1
  71. Nechme PA, Amaral FG, Middleton B, et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol Sleep Circadian Rhythms. 2019;6:70−76. doi: 10.1016/j.nbscr.2019.04.001
  72. Palmer KR, Mockler JC, Davies-Tuck ML, et al. Protect-me: A parallel-group, triple blinded, placebo-controlled randomised clinical trial protocol assessing antenatal maternal melatonin supplementation for fetal neuroprotection in early-onset fetal growth restriction. BMJ Open. 2019;9(6):e028243. doi: 10.1136/bmjopen-2018-028243
  73. Fernando S, Wallace EM, Vollenhoven B, et al. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front Endocrino (Lausanne). 2018;9:545. doi: 10.3389/fendo.2018.00545
  74. Khezri MB, Reihany MD, Dabbaghi Ghaleh T, Mohammadi N. Effect of melatonin on blood loss after cesarean section: A prospective randomized double-blind trial. J Obstet. Gynaecol India. 2019;69(5):436–443. doi: 10.1007/s13224-019-01205-7
  75. Hobson SR, Gurusinghe S, Lim R, et al. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res. 2018;65(3):e12508. doi: 10.1111/jpi.12508
  76. Zheng M, Tong J, Li WP, Chen ZJ, Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures. Gynecol Endocrinol. 2018;34(5):446–450. doi: 10.1080/09513590.2017.1409713
  77. Mokhtari F, Akbari Asbagh F, Azmoodeh O, et al. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: A randomized clinical trial. Int J Fertil Steril. 2019;13(3):225–229. doi: 10.22074/ijfs.2019.5717
  78. Valenzuela-Melgarejo FJ, Lagunas C, Carmona-Pastén F, et al. Supraphysiological role of melatonin over vascular dysfunction of pregnancy, a new therapeutic agent? Front Physiol. 2021;12:767684. doi: 10.3389/fphys.2021.767684
  79. De Martelly VA, Dreixler J, Tung A, et al Long-term postpartum cardiac function and its association with preeclampsia. J Am Heart Assoc. 2021;10(5):e018526. doi: 10.1161/JAHA.120.018526

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 Eсо-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies