Patterns of development and formation of the fetal central nervous system integrative function in the antenatal period

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The development of the fetal central nervous system and the formation of its integrative functions have been studied for a long time. In the middle of the 20th century, researchers paid attention to structural changes and in the 1980s to the sequence of formation of functional relationships in the fetal body and the possibilities of their assessment. Further development of technology (accumulation of knowledge in the field of embryology, better resolution of ultrasound diagnostic devices, introduction and improvement of magnetic resonance imaging methods) allowed for not only receiving more detailed data on structural patterns in the fetal brain during pregnancy, but also presenting new opportunities for expanding knowledge about its functional condition. The review is devoted to the generalization of knowledge about the development of the fetal central nervous system, the brain vascular network formation and the brain circulation, as well as possibilities of assessing the formation of the fetal central nervous system integrative function during the entire period of pregnancy.

Full Text

Restricted Access

About the authors

Sofya R. Yusenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott

Author for correspondence.
Email: iusenko.sr@gmail.com
Russian Federation, Saint Petersburg

Stanislava V. Nagorneva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott

Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN-code: 5109-7613
ResearcherId: К-3723-2018

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600
ResearcherId: P-4357-2017

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint-Petersburg

References

  1. Konkel L. The brain before birth: using fMRI to explore the secrets of fetal neurodevelopment. Environ. Health Perspect. 2018;126(11). doi: 10.1289/EHP2268
  2. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–348. doi: 10.1007/s11065-010-9148-4
  3. San-Jose LM, Roulin A. On the potential role of the neural crest cells in integrating pigmentation into behavioral and physiological syndromes. Front Ecol Evol. 2020;8. doi: 10.3389/fevo.2020.00278
  4. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: boulder bommittee revisited. Nat Rev Neurosci. 2008;9(2):110–122. doi: 10.1038/nrn2252
  5. Quezada S, Castillo-Melendez M, Walker DW, et al. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol. 2018;596(23):5665–5674. doi: 10.1113/JP277151
  6. Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 2016;35(10):1021–1044. doi: 10.15252/embj.201593701
  7. Blaas HG, Eik-Nes SH, Kiserud T, et al. Early development of the forebrain and midbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1994;4(3):183–192. doi: 10.1046/j.1469-0705.1994.04030183.x
  8. Blaas HG, Eik-Nes SH, Kiserud T, et al. Early development of the hindbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1995;5(3):151–160. doi: 10.1046/j.1469-0705.1995.05030151.x
  9. Barkovich AJ, Raybaud C, editors. Pediatric neuroimaging. 5th ed. Philadelphia; 2012.
  10. Barkovich MJ, Barkovich AJ. MR imaging of normal brain development. Neuroimaging Clin N Am. 2019;29(3):325–337. doi: 10.1016/j.nic.2019.03.007
  11. Studholme C. Mapping fetal brain development in utero using magnetic resonance imaging: the big bang of brain mapping. Annu Rev Biomed Eng. 2011;13(1):345–368. doi: 10.1146/annurev-bioeng-071910-124654
  12. Dubois J, Dehaene-Lambertz G, Kulikova S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience. 2014;276:48–71. doi: 10.1016/j.neuroscience.2013.12.044
  13. Ouyang M, Dubois J, Yu Q, et al. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage. 2019;185:836–850. doi: 10.1016/j.neuroimage.2018.04.017
  14. Studholme C. Mapping the developing human brain in utero using quantitative MR imaging techniques. Semin Perinatol. 2015;39(2):105–112. doi: 10.1053/j.semperi.2015.01.003
  15. Wright R, Makropoulos A, Kyriakopoulou V, et al. Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: application of spectral surface matching. Neuroimage. 2015;120:467–480. doi: 10.1016/j.neuroimage.2015.05.087
  16. Moltoni G, Talenti G, Righini A. Brain fetal neuroradiology: a beginner’s guide. Transl Pediatr. 2021;10(4):1065–1077. doi: 10.21037/tp-20-293
  17. Hill J, Dierker D, Neil J, et al. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J Neurosci. 2010;30(6):2268–2276. doi: 10.1523/JNEUROSCI.4682-09.2010
  18. Kim K, Habas PA, Rousseau F, et al. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging. 2010;29(1):146–158. doi: 10.1109/TMI.2009.2030679
  19. Habas PA, Scott JA, Roosta A, et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex. 2012;22(1):13–25. doi: 10.1093/cercor/bhr053
  20. Clouchoux C, Kudelski D, Gholipour A, et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct. 2012;217(1):127–139. doi: 10.1007/s00429-011-0325-x
  21. Dubois J, Benders M, Borradori-Tolsa C, et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008;131(8):2028–2041. doi: 10.1093/brain/awn137
  22. Geva R, Eshel R, Leitner Y, et al. Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study. Pediatrics. 2006;118(1):91–100. doi: 10.1542/peds.2005-2343
  23. Garel C, Chantrel E, Elmaleh M, et al. Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst. 2003;19(7–8):422–425. doi: 10.1007/s00381-003-0767-4
  24. Kyriakopoulou V, Vatansever D, Davidson A, et al. Normative biometry of the fetal brain using magnetic resonance imaging. Brain Struct Funct. 2017;222(5):2295–2307. doi: 10.1007/s00429-016-1342-6
  25. Conte G, Milani S, Palumbo G, et al. Prenatal brain MR imaging: reference linear biometric centiles between 20 and 24 gestational weeks. Am J Neuroradiol. 2018;39(5):963–967. doi: 10.3174/ajnr.A5574
  26. Yoshida R, Ishizu K, Yamada S, et al. Dynamics of gyrification in the human cerebral cortex during development. Congenit Anom (Kyoto). 2017;57(1):8–14. doi: 10.1111/cga.12179
  27. Wobrock T, Gruber O, McIntosh AM, et al. Reduced prefrontal gyrification in obsessive–compulsive disorder. Eur Arch Psychiatry Clin Neurosci. 2010;260(6):455–464. doi: 10.1007/s00406-009-0096-z
  28. Auzias G, Viellard M, Takerkart S, et al. Atypical sulcal anatomy in young children with autism spectrum disorder. NeuroImage Clin. 2014;4:593–603. doi: 10.1016/j.nicl.2014.03.008
  29. Budday S, Raybaud C, Kuhl E. A mechanical model predicts morphological abnormalities in the developing human brain. Sci Rep. 2015;4(1). doi: 10.1038/srep05644
  30. Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3
  31. Mrzljak L, Uylings HB, Van Eden CG, et al. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res. 1990;85:185–222. doi: 10.1016/s0079-6123(08)62681-3
  32. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–178. doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
  33. Thomason ME. Structured spontaneity: building circuits in the human prenatal brain. Trends Neurosci. 2018;41(1):1–3. doi: 10.1016/j.tins.2017.11.004
  34. Kostović I, Jovanov-Milošević N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med. 2006;11(6):415–422. doi: 10.1016/j.siny.2006.07.001
  35. Vasung L, Huang H, Jovanov-Milošević N, et al. Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat. 2010;217(4):400–417. doi: 10.1111/j.1469-7580.2010.01260.x
  36. Collin G, van den Heuvel MP. The ontogeny of the human connectome. Neurosci. 2013;19(6):616–628. doi: 10.1177/1073858413503712
  37. Hoff GE, Van den Heuvel MP, Benders MJ, et al. On development of functional brain connectivity in the young brain. Front Hum Neurosci. 2013;7:650. doi: 10.3389/fnhum.2013.00650
  38. Turk E, van den Heuvel MI, Benders MJ, et al. Functional connectome of the fetal brain. J Neurosci. 2019;39(49):9716–9724. doi: 10.1523/JNEUROSCI.2891-18.2019
  39. Krontira AC, Cruceanu C. The fetal functional connectome offers clues for early maturing networks and implications for neurodevelopmental disorders. J Neurosci. 2020;40(23):4436–4438. doi: 10.1523/JNEUROSCI.0260-20.2020
  40. Larsen WJ. Human embryology. 3rd ed. Philadelphia: Churchill Livingstone; 2001.
  41. Marín-Padilla M. The human brain intracerebral microvascular system: development and structure. Front Neuroanat. 2012;6:38. doi: 10.3389/fnana.2012.00038
  42. Vasung L, Abaci Turk E, Ferradal SL, et al. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage. 2019;187:226–254. doi: 10.1016/j.neuroimage.2018.07.041
  43. Raghunathan R, Liu C-H, Singh M, et al. A comparison of microvasculature changes in the fetal brain and maternal extremities due to prenatal alcohol exposure using optical coherence angiography. In: Proceedings of the SPIE. Dynamics and Fluctuations in Biomedical Photonics XVIII. Ed. by V.V. Tuchin, M.J. Leahy, R.K. Wang. 2021:11641. doi: 10.1117/12.2583340
  44. Bautch VL, James JM. Neurovascular development. Cell Adh Migr. 2009;3(2):199–204. doi: 10.4161/cam.3.2.8397
  45. Willie CK, Tzeng Y-C, Fisher JA, et al. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–859. doi: 10.1113/jphysiol.2013.268953
  46. Nasretdinov AR, Khazipov RN. Early activity patterns and thalamocortical synaptic plasticity during the “brain spurt” period. Uchenye zapiski kazanskogo universiteta Seriya estestvennye nauki. 2018;160(4):677–685
  47. Haynes RL, Borenstein NS, Desilva TM, et al. Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2005;484(2):156–167. doi: 10.1002/cne.20453
  48. Akhmetshina DR, Valeeva GR, Colonnese M, et al. Brain activity at the embryonic stages of development. Uchenye zapiski Kazanskogo universiteta. Seriya Estestvennye nauki. 2015;157(2):5–34.
  49. Vrselja Z, Brkic H, Mrdenovic S, et al. Function of circle of willis. J Cereb Blood Flow Metab. 2014;34(4):578–584. doi: 10.1038/jcbfm.2014.7
  50. Vanderah T. Nolte’s essentials of the human brain. 1st ed. 2009.
  51. Pooh RK, Kurjak A. Fetal brain vascularity visualized by conventional 2D and 3D power doppler technology. Donald Sch J Ultrasound Obstet Gynecol. 2010;4(3):249–258. doi: 10.5005/jp-journals-10009-1147
  52. Ageeva MI. Dopplerograficheskoe issledovanie gemodinamiki ploda: posobie dlya vrachey. 2006.
  53. Burlev VA, Zaydieva S, Il’yasova NA. Regulyatsiya angiogeneza gestatsionnogo perioda. Problemy reproduktsii. 2008;3:15–22.
  54. Cipolla MJ. The cerebral circulation. Colloq Ser Integr Syst Physiol From Mol to Funct. 2009;1(1):1–59. doi: 10.4199/C00005ED1V01Y200912ISP002
  55. Pooh RK, Pooh KH. Fetal neuroimaging. Fetal Matern Med Rev. 2008;19(1):1–31. doi: 10.1017/S0965539508002106
  56. Barashnev YuI. Perinatal’naya nevrologiya. Moscow: Triada-Kh; 2005. (in Russ.)
  57. Polyanin AA, Kogan IYu. Venoznoe krovoobrashchenie ploda pri normal’nom protekayushchey i oslozhnennoy beremennosti. Saint Petersburg; 2002. (in Russ.)
  58. Lees CC, Stampalija T, Baschat AA, et al. ISUOG practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. doi: 10.1002/uog.22134
  59. Bhide A, Acharya G, Baschat A, et al. ISUOG practice guidelines (updated): use of doppler velocimetry in obstetrics. Ultrasound Obstet Gynecol. 2021;58(2):331–339. doi: 10.1002/uog.23698
  60. Belich AI. Evolutionary approach to the study of central nervous system foundation of the fetus. Journal of Obstetrics and Women’s Diseases. 2010;59(5):12–16.
  61. Jakab A, Schwartz E, Kasprian G, et al. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci. 2014;8:852. doi: 10.3389/fnhum.2014.00852
  62. Canini M, Cavoretto P, Scifo P, et al. Subcortico-cortical functional connectivity in the fetal brain: a cognitive development blueprint. Cereb Cortex Commun. 2020;1(1). doi: 10.1093/texcom/tgaa008
  63. Pavlova NG. Antenatal’naya diagnostika, profilaktika i lechenie funktsional’nykh narusheniy razvitiya TsNS ploda. [dissertation abstract]. Saint Petersburg; 2000. (In Russ.). [cited 2022 Oct 10]. Available from: https://viewer.rusneb.ru/ru/000200_000018_RU_NLR_bibl_246393?page=1&rotate=0&theme=white
  64. Garmasheva NL, Konstantinova NN. Vvedenie v perinatal’nuyu meditsinu. Moscow: 1978. (In Russ.)
  65. Brändle J, Preissl H, Draganova R, et al. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development. Front Hum Neurosci. 2015;9. doi: 10.3389/fnhum.2015.00147
  66. Belich AI, Natsvishvili VV. Stanovlenie tsikla “aktivnost’-pokoy” ploda cheloveka. Vestnik AMN SSSR. 1989;(3):35–42. (In Russ.)
  67. Garmasheva NL, Konstantinova NN, Belich AI. K voprosu o mekhanizmakh stanovleniya reflektornoy deyatel’nosti. Zh evol biokhim i fiziol. 1998;34(1):96–106. (In Russ.)
  68. Nijhuis JG, Prechtl HF, Martin CB, et al. Are there behavioural states in the human fetus? Early Hum Dev. 1982;6(2):177–195. doi: 10.1016/0378-3782(82)90106-2
  69. Belich AI, Konstantinova NN, Natslishvili VV, et al. Morfofiziologicheskiy analiz formirovaniya mekhanizmov tsikla “aktivnost’-pokoy” v ontogeneze cheloveka. Vestnik RAMN. 1996;(3):55–61. (In Russ.)
  70. Groome L, Gotlieb S, Neely C, et al. Developmental trends in fetal habituation to vibroacoustic stimulation. Am J Perinatol. 1993;10(01):46–49. doi: 10.1055/s-2007-994700
  71. Morokuma S, Fukushima K, Kawai N, et al. Fetal habituation correlates with functional brain development. Behav Brain Res. 2004;153(2):459–463. doi: 10.1016/j.bbr.2004.01.002
  72. Thompson RF, Spencer WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966;73(1):16–43. doi: 10.1037/h0022681
  73. Robinson DA. The use of control systems analysis in the neurophysiology of eye movements. Annu Rev Neurosci. 1981;4(1):463–503. doi: 10.1146/annurev.ne.04.030181.002335
  74. Maehara K, Morokuma S, Nakahara K, et al. A study on the association between eye movements and regular mouthing movements (RMMs) in normal fetuses between 24 to 39 weeks of gestation. Ed. by M.Y. Oncel. PLoS One. 2020;15(5). doi: 10.1371/journal.pone.0233909
  75. Krueger C, Holditch-Davis D, Quint S, et al. Recurring auditory experience in the 28- to 34-week-old fetus. Infant Behav Dev. 2004;27(4):537–543. doi: 10.1016/j.infbeh.2004.03.001
  76. James DK, Spencer CJ, Stepsis BW. Fetal learning: a prospective randomized controlled study. Ultrasound Obstet Gynecol. 2002;20(5):431–438. doi: 10.1046/j.1469-0705.2002.00845.x
  77. Otera Y, Morokuma S, Fukushima K, et al. Correlation between regular mouthing movements and heart rate patterns during non-rapid eye movement periods in normal human fetuses between 32 and 40 weeks of gestation. Early Hum Dev. 2013;89(6):381–386. doi: 10.1016/j.earlhumdev.2012.12.007
  78. Al-Qahtani NH. Foetal response to music and voice. Aust New Zeal J Obstet Gynaecol. 2005;45(5):414–417. doi: 10.1111/j.1479-828X.2005.00458.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Development of the neural tube: а — cranial (1) and trunk (2) neural crest cells migrate to different parts of the embryo depending on where they originated; b — the neural crest is formed from the borders of the neural plate that folds forming the neural tube and neural crest cells will delaminate from the neural plate and migrate from the space between the neural tube and the ectoderm [3]

Download (202KB)
3. Fig. 2. Development of the cerebral vesicles in the embryonic period. 2D ultrasound scan data [7, 8]

Download (74KB)
4. Fig. 3. Average cortical surface templates at 23–37 weeks of gestation: а, surface of the brain; b, sagittal surface of the brain. Map data from R. Wright et al. (2015) [15]

Download (156KB)
5. Fig. 4. Drawing of the outer (white line) and inner (grey line) contour of a representative coronal magnetic resonance slice of the cerebral hemisphere. The gyrification index is calculated from the ratio between the outer and inner contours [26]

Download (47KB)
6. Fig. 5. Schematic representation of the embryonic vascular system in the middle of the sixth obstetric week of pregnancy. Vessels departing from the heart are represented by four pairs of aortic arches and a paired dorsal aorta. At this time, the embryo has already formed a vascular network in the cranial region, which will supply blood to the brain. 1, right and left anterior cardinal veins; 2, right aortic arches; 3, right and left dorsal aortae; 4, heart; 5, left common cardinal vein; 6, right and left vitelline arteries; 7, right and left umbilical arteries; 8, umbilical vein; 9, yolk vein [40]

Download (151KB)
7. Fig. 6. Arterial blood supply to the cerebral cortex. Anterior, middle and posterior cerebral arteries indicate areas supplied by the anterior, middle, and posterior cerebral arteries, respectively. 1, anterior cerebral artery; 2, internal carotid artery; 3, middle cerebral artery; 4, posterior communicating artery; 5, posterior cerebral artery; 6, basilar artery [50]. ACA — anterior cerebral artery; MCA — middle cerebral artery; PCA — posterior cerebral artery

Download (221KB)

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies