Repeated clinical case of fetal congenital malformation in a family with hereditary short-rib thoracic dysplasia type 3

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article shows the genetic causes of recurrent fetal malformations on the example of a clinical case of hereditary short-rib thoracic dysplasia type 3.

Congenital malformations of the fetus are most often sporadic; however, in rare cases, this pathology can recur in one married couple, and the formation of congenital anomalies during subsequent pregnancy can both have general syndromes and affect various systems and organs.

Short-rib thoracic dysplasia type 3 is a rare genetic disorder with autosomal recessive inheritance. Patients for whom the carriage of pathogenic alleles in genes associated with congenital skeletal anomalies has been confirmed require a detailed clinical examination. Such married couples want expert-level medical genetic counseling with performing additional genetic tests, if necessary. This may clarify the diagnosis, which will determine further tactics for preparing the couple for the next pregnancy on their own or using assisted reproductive technology programs and / or surrogate motherhood.

Full Text

Restricted Access

About the authors

Margarita O. Shengelia

The research institute of obstetrics, gynecology and reproductology named after D.O.Ott

Author for correspondence.
Email: bakleicheva@gmail.com
ORCID iD: 0000-0002-0103-8583
Scopus Author ID: 57203248029
Russian Federation, Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089
ResearcherId: D-3880-2018

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Olga V. Pachuliia

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: for.olga.kosyakova@gmail.com
ORCID iD: 0000-0003-4116-0222
SPIN-code: 1204-3160
Scopus Author ID: 57299197900

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Nodari D. Shengeliia

Center for Family Planning and Reproduction

Email: nod802210@yandex.ru
ORCID iD: 0000-0003-0677-494X
SPIN-code: 7495-9480

MD

Russian Federation, St. Petersburg

Alexander V. Baldin

Center for Family Planning and Reproduction

Email: abaldin@yandex.ru

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Yulia A. Nasykhova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: yulnasa@gmail.com
ORCID iD: 0000-0002-3543-4963
SPIN-code: 9661-9416

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Andrey S. Glotov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
SPIN-code: 1406-0090
Scopus Author ID: 7004340255
ResearcherId: E-8525-2015

Dr. Sci. (Biol.)

Russian Federation, Saint Petersburg

References

  1. Shengeliya MO, Bespalova ON, Shengeliya ND, et al. Folate-dependent congenital malformations of the fetus. Clinical case. Women’s health and reproduction: online edition. 2022;1(52). (In Russ.) [cited 2022 Dec 21]. Available from: https://whfordoctors.su/statyi/folatzavisimye-vrozhdjonnye-poroki-razvitija-ploda/
  2. Baranov VS, Kuznetsova TV, Koshcheeva TK, et al. Prenatal’naya diagnostika nasledstvennykh bolezney: sostoyanie i perspektivy. Saint Petersburg: Eco-Vector, 2017. (In Russ.).
  3. Martino F, Magenta A, Pannarale G, et al. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med. 2016;17(8):539−546. doi: 10.2459/JCM.0000000000000334
  4. Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS One. 2018;13(4). doi: 10.1371/journal.pone.0194986
  5. Borkhvard VG. Morfogenez i evolyutsiya osevogo skeleta (teoriya skeletnogo segmenta). Leningrad: LGU; 1982. (In Russ.).
  6. Chen CP, Tzen CY. Short-rib polydactyly syndrome type III (Verma-Naumoff) in a third-trimester fetus with unusual associations of epiglottic hypoplasia, renal cystic dysplasia, pyelectasia and oligohydramnios. Prenat Diagn. 2001;21(12):1101−1102. doi: 10.1002/pd.182
  7. Chen CP, Chang TY, Tzen CY, et al. Sonographic detection of situs inversus, ventricular septal defect, and short-rib polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus not known to be at risk. Ultrasound Obstet Gynecol. 2002;19(6):629−631. doi: 10.1046/j.1469-0705.2002.00731_4.x
  8. Chen CP, Chang TY, Tzen CY, et al. Second-trimester sonographic detection of short rib-polydactyly syndrome type II (Majewski) following an abnormal maternal serum biochemical screening result. Prenat Diagn. 2003;23(4):353−355. doi: 10.1002/pd.574
  9. Chen CP, Shih JC, Tzen CY, et al. Recurrent short-rib polydactyly syndrome: prenatal three-dimensional ultrasound findings and associations with congenital high airway obstruction and pyelectasia. Prenat Diagn. 2005;25(5):417−418. doi: 10.1002/pd.976
  10. Chen CP, Chang TY, Chen CY, et al. Short rib-polydactyly syndrome type II (Majewski): prenatal diagnosis, perinatal imaging findings and molecular analysis of the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(1):100−105. doi: 10.1016/j.tjog.2012.01.020
  11. Chen CP, Chern SR, Chang TY, et al. Prenatal diagnosis and molecular genetic analysis of short rib-polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus with a homozygous splice site mutation in intron 4 in the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(2):266−270. doi: 10.1016/j.tjog.2012.04.018
  12. Chen CP, Ko TM, Chang TY, et al. Prenatal diagnosis of short-rib polydactyly syndrome type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) associated with compound heterozygous mutations in DYNC2H1 in a fetus. Taiwan J Obstet Gynecol. 2018;57(1):123−127. doi: 10.1016/j.tjog.2017.12.021
  13. Thiel C, Kessler K, Giessl A, et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet. 2011;88(1):106−114. doi: 10.1016/j.ajhg.2010.12.004
  14. Geng K, Mu K, Zhao Y, et al. Identification of novel compound heterozygous mutations of the DYNC2H1 gene in a fetus with short-rib thoracic dysplasia 3 with or without polydactyly. Intractable Rare Dis Res. 2020;9(2):95−98. doi: 10.5582/irdr.2020.01031
  15. Schmidts M, Arts HH, Bongers EM, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309−323. doi: 10.1136/jmedgenet-2012-101284
  16. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123(Pt 4):499−503. doi: 10.1242/jcs.050377
  17. Ferkol T. Primary ciliary dyskinesia (Immotile cilia syndrome). In: Nelson Textbook of Pediatrics. Ed. by R.M. Kliegman, B.F. Stanton, J.W. St. Geme. Philadelphia: Elsevier; 2011:1497е2–1497е6
  18. Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160(3):165−174. doi: 10.1002/ajmg.c.31336
  19. Reddy SN, Seth BA, Colaco P. Jeune syndrome with neonatal cholestasis. Indian J Pediatr. 2011;78(9):1151−1153. doi: 10.1007/s12098-011-0392-2
  20. Paladini D, Volpe P. Ultrasound of congenital fetal anomalies: differential diagnosis and prognostic indicators. London: Informa Healthcare; 2007.
  21. Ovsyannikov DYu, Stepanova EV, Belyashova MA. Asphyxiating thoracic dysplasia (also known as Jeune syndrome). Pediatria named after G.N. Speransky. 2015;94(4):69−77. (In Russ.).
  22. Hennekam RC, Beemer FA, Gerards LJ, et al. Thoracic pelvic phalangeal dystrophy (Jeune’s syndrome). Tijdschr Kindergeneeskd. 1983;51(3):95−100.
  23. Hall T, Bush A, Fell J, et al. Ciliopathy spectrum expanded? Jeune syndrome associated with foregut dysmotility and malrotation. Pediatr Pulmonol. 2009;44(2):198−201. doi: 10.1002/ppul.20960
  24. Chen CP, Lin SP, Liu FF, et al. Prenatal diagnosis of asphyxiating thoracic dysplasia (Jeune syndrome). Am J Perinatol. 1996;13(8):495−498. doi: 10.1055/s-2007-994435
  25. den Hollander NS, Robben SG, Hoogeboom AJ, et al. Early prenatal sonographic diagnosis and follow-up of Jeune syndrome. Ultrasound Obstet Gynecol. 2001;18(4):378−383. doi: 10.1046/j.0960-7692.2001.00530.x
  26. Zimmer EZ, Weinraub Z, Raijman A, et al. Antenatal diagnosis of a fetus with an extremely narrow thorax and short limb dwarfism. J Clin Ultrasound. 1984;12(2):112−114. doi: 10.1002/jcu.1870120213
  27. Rahmani R, Sterling CL, Bedford HM. Prenatal diagnosis of Jeune-like syndromes with two-dimensional and three-dimensional sonography. J Clin Ultrasound. 2012;40(4):222−226. doi: 10.1002/jcu.20902
  28. Tonni G, Panteghini M, Bonasoni M, et al. Prenatal ultrasound and MRI Diagnosis of Jeune syndrome type I (asphyxiating thoracic dystrophy) with histology and post-mortem three-dimensional CT confirmation. Fetal Pediatr Pathol. 2013;32(2):123−132. doi: 10.3109/15513815.2012.681427
  29. Dagoneau N, Goulet M, Geneviève D, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706−711. doi: 10.1016/j.ajhg.2009.04.016
  30. Marchuk DS, Crooks K, Strande N, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. PLoS One. 2018;13(12). doi: 10.1371/journal.pone.0209185
  31. Nykamp K, Anderson M, Powers M, et al.; Invitae Clinical Genomics Group; Topper S. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105−1117. doi: 10.1038/gim.2017.37
  32. Vora NL, Gilmore K, Brandt A, et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet Med. 2020 May;22(5):954−961. doi: 10.1038/s41436-020-0750-4
  33. Čechová A, Baxová A, Zeman J, et al. Attenuated type of asphyxiating thoracic dysplasia due to mutations in DYNC2H1 gene. Prague Med Rep. 2019;120(4):124−130. doi: 10.14712/23362936.2019.17
  34. Zhang W, Taylor SP, Ennis HA, et al.; University of Washington Center for Mendelian Genomics, Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152−166. doi: 10.1002/humu.23362
  35. Baujat G, Huber C, El Hokayem J, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91−98. doi: 10.1136/jmedgenet-2012-101282
  36. Kars ME, Başak AN, Onat OE, et al. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci. 2021;118(36). DOI: /10.1073/pnas.2026076118
  37. Stranneheim H, Lagerstedt-Robinson K, Magnusson M, et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 2021;13(1):40. doi: 10.1186/s13073-021-00855-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. The causes of congenital malformations of the fetal skeletal system [5]: 1 — notochord; 2 — occipital complex; 3 — spine; 4 — scapula; 5 — laying of the bones of the upper limb; 6 — palmar plate; 7 — ribs; 8 — hip bone; 9 — laying of the bones of the lower limb

Download (244KB)

Copyright (c) 2023 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies