Repeated clinical case of fetal congenital malformation in a family with hereditary short-rib thoracic dysplasia type 3
- Authors: Shengelia M.O.1, Bespalova O.N.2, Pachuliia O.V.3, Shengeliia N.D.4, Baldin A.V.4, Nasykhova Y.A.3, Glotov A.S.3
-
Affiliations:
- The research institute of obstetrics, gynecology and reproductology named after D.O.Ott
- The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Center for Family Planning and Reproduction
- Issue: Vol 72, No 1 (2023)
- Pages: 109-118
- Section: Theory and Practice
- URL: https://journals.eco-vector.com/jowd/article/view/112166
- DOI: https://doi.org/10.17816/JOWD112166
- ID: 112166
Cite item
Abstract
The article shows the genetic causes of recurrent fetal malformations on the example of a clinical case of hereditary short-rib thoracic dysplasia type 3.
Congenital malformations of the fetus are most often sporadic; however, in rare cases, this pathology can recur in one married couple, and the formation of congenital anomalies during subsequent pregnancy can both have general syndromes and affect various systems and organs.
Short-rib thoracic dysplasia type 3 is a rare genetic disorder with autosomal recessive inheritance. Patients for whom the carriage of pathogenic alleles in genes associated with congenital skeletal anomalies has been confirmed require a detailed clinical examination. Such married couples want expert-level medical genetic counseling with performing additional genetic tests, if necessary. This may clarify the diagnosis, which will determine further tactics for preparing the couple for the next pregnancy on their own or using assisted reproductive technology programs and / or surrogate motherhood.
Full Text

About the authors
Margarita O. Shengelia
The research institute of obstetrics, gynecology and reproductology named after D.O.Ott
Author for correspondence.
Email: bakleicheva@gmail.com
ORCID iD: 0000-0002-0103-8583
Scopus Author ID: 57203248029
Russian Federation, Saint Petersburg
Olesya N. Bespalova
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089
ResearcherId: D-3880-2018
MD, Dr. Sci. (Med.)
Russian Federation, Saint PetersburgOlga V. Pachuliia
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: for.olga.kosyakova@gmail.com
ORCID iD: 0000-0003-4116-0222
SPIN-code: 1204-3160
Scopus Author ID: 57299197900
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgNodari D. Shengeliia
Center for Family Planning and Reproduction
Email: nod802210@yandex.ru
ORCID iD: 0000-0003-0677-494X
SPIN-code: 7495-9480
MD
Russian Federation, St. PetersburgAlexander V. Baldin
Center for Family Planning and Reproduction
Email: abaldin@yandex.ru
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgYulia A. Nasykhova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: yulnasa@gmail.com
ORCID iD: 0000-0002-3543-4963
SPIN-code: 9661-9416
Cand. Sci. (Biol.)
Russian Federation, Saint PetersburgAndrey S. Glotov
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
SPIN-code: 1406-0090
Scopus Author ID: 7004340255
ResearcherId: E-8525-2015
Dr. Sci. (Biol.)
Russian Federation, Saint PetersburgReferences
- Shengeliya MO, Bespalova ON, Shengeliya ND, et al. Folate-dependent congenital malformations of the fetus. Clinical case. Women’s health and reproduction: online edition. 2022;1(52). (In Russ.) [cited 2022 Dec 21]. Available from: https://whfordoctors.su/statyi/folatzavisimye-vrozhdjonnye-poroki-razvitija-ploda/
- Baranov VS, Kuznetsova TV, Koshcheeva TK, et al. Prenatal’naya diagnostika nasledstvennykh bolezney: sostoyanie i perspektivy. Saint Petersburg: Eco-Vector, 2017. (In Russ.).
- Martino F, Magenta A, Pannarale G, et al. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med. 2016;17(8):539−546. doi: 10.2459/JCM.0000000000000334
- Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS One. 2018;13(4). doi: 10.1371/journal.pone.0194986
- Borkhvard VG. Morfogenez i evolyutsiya osevogo skeleta (teoriya skeletnogo segmenta). Leningrad: LGU; 1982. (In Russ.).
- Chen CP, Tzen CY. Short-rib polydactyly syndrome type III (Verma-Naumoff) in a third-trimester fetus with unusual associations of epiglottic hypoplasia, renal cystic dysplasia, pyelectasia and oligohydramnios. Prenat Diagn. 2001;21(12):1101−1102. doi: 10.1002/pd.182
- Chen CP, Chang TY, Tzen CY, et al. Sonographic detection of situs inversus, ventricular septal defect, and short-rib polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus not known to be at risk. Ultrasound Obstet Gynecol. 2002;19(6):629−631. doi: 10.1046/j.1469-0705.2002.00731_4.x
- Chen CP, Chang TY, Tzen CY, et al. Second-trimester sonographic detection of short rib-polydactyly syndrome type II (Majewski) following an abnormal maternal serum biochemical screening result. Prenat Diagn. 2003;23(4):353−355. doi: 10.1002/pd.574
- Chen CP, Shih JC, Tzen CY, et al. Recurrent short-rib polydactyly syndrome: prenatal three-dimensional ultrasound findings and associations with congenital high airway obstruction and pyelectasia. Prenat Diagn. 2005;25(5):417−418. doi: 10.1002/pd.976
- Chen CP, Chang TY, Chen CY, et al. Short rib-polydactyly syndrome type II (Majewski): prenatal diagnosis, perinatal imaging findings and molecular analysis of the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(1):100−105. doi: 10.1016/j.tjog.2012.01.020
- Chen CP, Chern SR, Chang TY, et al. Prenatal diagnosis and molecular genetic analysis of short rib-polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus with a homozygous splice site mutation in intron 4 in the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(2):266−270. doi: 10.1016/j.tjog.2012.04.018
- Chen CP, Ko TM, Chang TY, et al. Prenatal diagnosis of short-rib polydactyly syndrome type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) associated with compound heterozygous mutations in DYNC2H1 in a fetus. Taiwan J Obstet Gynecol. 2018;57(1):123−127. doi: 10.1016/j.tjog.2017.12.021
- Thiel C, Kessler K, Giessl A, et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet. 2011;88(1):106−114. doi: 10.1016/j.ajhg.2010.12.004
- Geng K, Mu K, Zhao Y, et al. Identification of novel compound heterozygous mutations of the DYNC2H1 gene in a fetus with short-rib thoracic dysplasia 3 with or without polydactyly. Intractable Rare Dis Res. 2020;9(2):95−98. doi: 10.5582/irdr.2020.01031
- Schmidts M, Arts HH, Bongers EM, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309−323. doi: 10.1136/jmedgenet-2012-101284
- Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123(Pt 4):499−503. doi: 10.1242/jcs.050377
- Ferkol T. Primary ciliary dyskinesia (Immotile cilia syndrome). In: Nelson Textbook of Pediatrics. Ed. by R.M. Kliegman, B.F. Stanton, J.W. St. Geme. Philadelphia: Elsevier; 2011:1497е2–1497е6
- Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160(3):165−174. doi: 10.1002/ajmg.c.31336
- Reddy SN, Seth BA, Colaco P. Jeune syndrome with neonatal cholestasis. Indian J Pediatr. 2011;78(9):1151−1153. doi: 10.1007/s12098-011-0392-2
- Paladini D, Volpe P. Ultrasound of congenital fetal anomalies: differential diagnosis and prognostic indicators. London: Informa Healthcare; 2007.
- Ovsyannikov DYu, Stepanova EV, Belyashova MA. Asphyxiating thoracic dysplasia (also known as Jeune syndrome). Pediatria named after G.N. Speransky. 2015;94(4):69−77. (In Russ.).
- Hennekam RC, Beemer FA, Gerards LJ, et al. Thoracic pelvic phalangeal dystrophy (Jeune’s syndrome). Tijdschr Kindergeneeskd. 1983;51(3):95−100.
- Hall T, Bush A, Fell J, et al. Ciliopathy spectrum expanded? Jeune syndrome associated with foregut dysmotility and malrotation. Pediatr Pulmonol. 2009;44(2):198−201. doi: 10.1002/ppul.20960
- Chen CP, Lin SP, Liu FF, et al. Prenatal diagnosis of asphyxiating thoracic dysplasia (Jeune syndrome). Am J Perinatol. 1996;13(8):495−498. doi: 10.1055/s-2007-994435
- den Hollander NS, Robben SG, Hoogeboom AJ, et al. Early prenatal sonographic diagnosis and follow-up of Jeune syndrome. Ultrasound Obstet Gynecol. 2001;18(4):378−383. doi: 10.1046/j.0960-7692.2001.00530.x
- Zimmer EZ, Weinraub Z, Raijman A, et al. Antenatal diagnosis of a fetus with an extremely narrow thorax and short limb dwarfism. J Clin Ultrasound. 1984;12(2):112−114. doi: 10.1002/jcu.1870120213
- Rahmani R, Sterling CL, Bedford HM. Prenatal diagnosis of Jeune-like syndromes with two-dimensional and three-dimensional sonography. J Clin Ultrasound. 2012;40(4):222−226. doi: 10.1002/jcu.20902
- Tonni G, Panteghini M, Bonasoni M, et al. Prenatal ultrasound and MRI Diagnosis of Jeune syndrome type I (asphyxiating thoracic dystrophy) with histology and post-mortem three-dimensional CT confirmation. Fetal Pediatr Pathol. 2013;32(2):123−132. doi: 10.3109/15513815.2012.681427
- Dagoneau N, Goulet M, Geneviève D, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706−711. doi: 10.1016/j.ajhg.2009.04.016
- Marchuk DS, Crooks K, Strande N, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. PLoS One. 2018;13(12). doi: 10.1371/journal.pone.0209185
- Nykamp K, Anderson M, Powers M, et al.; Invitae Clinical Genomics Group; Topper S. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105−1117. doi: 10.1038/gim.2017.37
- Vora NL, Gilmore K, Brandt A, et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet Med. 2020 May;22(5):954−961. doi: 10.1038/s41436-020-0750-4
- Čechová A, Baxová A, Zeman J, et al. Attenuated type of asphyxiating thoracic dysplasia due to mutations in DYNC2H1 gene. Prague Med Rep. 2019;120(4):124−130. doi: 10.14712/23362936.2019.17
- Zhang W, Taylor SP, Ennis HA, et al.; University of Washington Center for Mendelian Genomics, Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152−166. doi: 10.1002/humu.23362
- Baujat G, Huber C, El Hokayem J, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91−98. doi: 10.1136/jmedgenet-2012-101282
- Kars ME, Başak AN, Onat OE, et al. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci. 2021;118(36). DOI: /10.1073/pnas.2026076118
- Stranneheim H, Lagerstedt-Robinson K, Magnusson M, et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 2021;13(1):40. doi: 10.1186/s13073-021-00855-5
Supplementary files
