Fetal growth restriction in diabetic pregnancy: a retrospective single-center study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


BACKGROUND: The high risk of adverse maternal and perinatal complications in patients with fetal growth restriction and diabetes mellitus requires a detailed assessment of the major risk factors and outcomes.

AIM: The aim of this study was to determine the main risk factors for fetal growth retardation in pregnant women with pregestational and gestational diabetes mellitus, and to assess obstetric and perinatal outcomes in these patients.

MATERIALS AND METHODS: We conducted a retrospective single-center cohort study at the premises of the Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Saint Petersburg, Russia. The study included 103 patients with type 1 diabetes mellitus, type 2 diabetes mellitus, or gestational diabetes mellitus with fetal growth retardation who delivered a singleton neonate from January 2017 to December 2021. Based on the antenatal diagnosis, the patients were divided into the following comparison groups: group I — early fetal growth retardation (n = 29), group II — late fetal growth retardation (n = 27), group III — small for gestational age (n = 47). Relative risk calculations were used to assess the contribution of risk factors and the risk of developing secondary outcomes.

RESULTS: Pregestational diabetes mellitus was the major risk factor for early fetal growth retardation development (relative risk 1.91; 95% confidence interval 1.04–3.50); especially type 1 diabetes mellitus (relative risk 1.64; 95% confidence interval 1.02–2.74) and more than 10 years of pregestational diabetes mellitus duration (relative risk 2.62; 95% confidence interval 1.12–6.17). Chronic hypertension increases the risk of early fetal growth retardation (relative risk 2.11; 95% confidence interval 2.21–3.68), while gestational hypertension was a significant risk factor for late fetal growth retardation development (relative risk 1.81; 95% confidence interval 1.01–3.70). Preeclampsia is associated with both early and late forms of fetal growth retardation. Maternal characteristics, such as age over 35 years, obesity, and in vitro fertilization pregnancy, increased the risk of early fetal growth retardation development. In turn, the presence of fetal growth retardation in patients with diabetes mellitus is associated with increased risk of cesarean section, prolonged stay of the newborn in the neonatal intensive care unit (≥5 days), low Apgar scores (<7 at the 5th minute), and neonatal hypoglycemia. Early fetal growth retardation is a significant risk factor for preterm birth (relative risk 6.23; 95% confidence interval 2.87–13.42) and fetal distress (relative risk 5.51; 95% confidence interval 2.28–13.33).

CONCLUSIONS: Being associated with a highly increased risk of adverse obstetric and perinatal outcomes, early fetal growth retardation in diabetic pregnancy is related to pregestational diabetes mellitus, especially type 1 diabetes mellitus, with a long history, as well as with hypertension in pregnancy.

Full Text

Restricted Access

About the authors

Ekaterina V. Kopteyeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407
Scopus Author ID: 57219285002
Russian Federation, Saint Petersburg

Elizaveta V. Shelayeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555
ResearcherId: K-2755-2018

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Elena N. Alekseenkova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN-code: 3976-2540
Scopus Author ID: 57212242446
ResearcherId: W-3735-2017
Russian Federation, Saint Petersburg

Stanislava V. Nagorneva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN-code: 5109-7613
ResearcherId: К-3723-2018

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg State University

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260
Scopus Author ID: 57191964826
ResearcherId: G-3759-2015

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg State University

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600
ResearcherId: P-4357-2017

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg; Saint Petersburg


  1. Melamed N, Baschat A, Yinon Y, et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet. 2021; 152(Suppl. 1):3–57. doi: 10.1002/ijgo.13522
  2. Papastefanou I, Wright D, Nicolaides KH. Competing-risks model for prediction of small-for-gestational-age neonate from maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2020;56(2):196–205. doi: 10.1002/uog.22129
  3. Rashid CS, Bansal A, Simmons RA. Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology. 20181;33(5):348–359. doi: 10.1152/physiol.00023.2018
  4. Kapustin RV. Beremennost’ i sakharnyi diabet: patogenez, prognozirovanie akusherskikh i perinatal’nykh oslozhnenii, taktika vedeniya gestatsionnogo perioda i rodorazresheniya [dissertation abstract]. Saint Petersburg, 2021. (In Russ.). [cited 2022 Nov 12]. Available from: https://www.dissercat.com/content/beremennost-i-sakharnyi-diabet-patogenez-prognozirovanie-akusherskikh-i-perinatalnykh-oslozh
  5. Piccoli GB, Clari R, Ghiotto S, et al. Type 1 diabetes, diabetic nephropathy, and pregnancy: a systematic review and meta-study. Rev Diabet Stud. 2013;10(1):6–26. doi: 10.1900/RDS.2013.10.6
  6. Adamczak L, Boron D, Gutaj P, et al. Fetal growth trajectory in type 1 pregestational diabetes (PGDM) — an ultrasound study. Ginekol Pol. 2021;92(2):110–117. doi: 10.5603/GP.a2020.0136
  7. Capobianco G, Gulotta A, Tupponi G, et al. Materno-fetal and neonatal complications of diabetes in pregnancy: a retrospective study. J Clin Med. 2020;9(9). doi: 10.3390/jcm9092707
  8. Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory fromintrauterine growth restriction tofuture obesity. Front Endocrinol. 2022;13. doi: 10.3389/fendo.2022.1041718
  9. Bendix I, Miller SL, Winterhager E. Editorial: causes and consequences of intrauterine growth restriction. Front Endocrinol. 2020;11. doi: 10.3389/fendo.2020.00205
  10. Huynh J, Dawson D, Roberts D, et al. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36(2):101–114. doi: 10.1016/j.placenta.2014.11.021
  11. Starikov R, Inman K, Chen K, et al. Comparison of placental findings in type 1 and type 2 diabetic pregnancies. Placenta. 2014;35(12):1001–1006. doi: 10.1016/j.placenta.2014.10.008
  12. Bhattacharjee D, Mondal SK, Garain P, et al. Histopathological study with immunohistochemical expression of vascular endothelial growth factor in placentas of hyperglycemic and diabetic women. J Lab Physicians. 2017;9(4):227–233. doi: 10.4103/JLP.JLP_148_16
  13. Kapustin RV, Kopteyeva EV, Tral TG, et al. Placental morphology in different types of diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2021;70(2):13–26. (In Russ.). doi: 10.17816/JOWD57149
  14. Gutaj P, Wender-Ozegowska E. Diagnosis and management of IUGR in pregnancy complicated by type 1 diabetes mellitus. Curr Diab Rep. 2016;16(5). doi: 10.1007/s11892-016-0732-8
  15. Kapustin R, Chepanov S, Kopteeva E, et al. Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus. Gynecol Endocrinol. 2020; 36(Suppl. 1):36–42. doi: 10.1080/09513590.2020.1816727
  16. Langmia IM, Kräker K, Weiss SE, et al. Cardiovascular programming during and after diabetic pregnancy: role of placental dysfunction and IUGR. Front Endocrinol. 2019;10. doi: 10.3389/fendo.2019.00215
  17. Brown MA, Magee LA, Kenny LC, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72(1):24–43. doi: 10.1161/HYPERTENSIONAHA.117.10803
  18. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
  19. Papageorghiou AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol. 2018;218(2S):S630–S640. doi: 10.1016/j.ajog.2018.01.011
  20. Papageorghiou AT, Ohuma EO, Altman DG, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):869–879. doi: 10.1016/S0140-6736(14)61490-2
  21. Golic M, Stojanovska V, Bendix I, et al. Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the srebf2 gene in rat fetuses. Hypertension. 2018; 71(5):911–920. doi: 10.1161/HYPERTENSIONAHA.117.10782
  22. Persson M, Shah PS, Rusconi F, et al. Association of maternal diabetes with neonatal outcomes of very preterm and very low-birth-weight infants: an international cohort study. JAMA Pediatr. 2018;172(9):867–875. doi: 10.1001/jamapediatrics.2018.1811
  23. Sobrevia L, Abarzúa F, Nien JK, et al. Review: differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes. Placenta. 2011;32(Suppl. 2):S159–S164. doi: 10.1016/j.placenta.2010.12.011
  24. Relph S, Patel T, Delaney L, et al. Adverse pregnancy outcomes in women with diabetes-related microvascular disease and risks of disease progression in pregnancy: a systematic review and meta-analysis. PLoS Med. 2021;18(11). doi: 10.1371/journal.pmed.1003856
  25. Morikawa M, Kato-Hirayama E, Mayama M, et al. Glycemic control and fetal growth of women with diabetes mellitus and subsequent hypertensive disorders of pregnancy. PLoS One. 2020;15(3). doi: 10.1371/journal.pone.0230488
  26. Herzog EM, Eggink AJ, Reijnierse A, et al. Impact of early- and late-onset preeclampsia on features of placental and newborn vascular health. Placenta. 2017; 49:72–79. doi: 10.1016/j.placenta.2016.11.014
  27. Phipps E, Prasanna D, Brima W, et al. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–1113. doi: 10.2215/CJN.12081115
  28. Bokslag A, van Weissenbruch M, Mol BW, et al. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev. 2016;102:47–50. doi: 10.1016/j.earlhumdev.2016.09.007.
  29. Lees C, Marlow N, Arabin B, et al; TRUFFLE Group. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42(4):400–408. doi: 10.1002/uog.13190
  30. Gaudineau A. Prevalence, risk factors, maternal and fetal morbidity and mortality of intrauterine growth restriction and small-for-gestational age. J Gynecol Obstet Biol Reprod. 2013;42(8):895–910. DOI: 0.1016/j.jgyn.2013.09.013
  31. Bedell S, Hutson J, de Vrijer B, et al. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol. 2021;19(2):176–192. doi: 10.2174/1570161118666200616144512
  32. Tanner LD, Brock And C, Chauhan SP. Severity of fetal growth restriction stratified according to maternal obesity. J Matern Fetal Neonatal Med. 2022;35(10):1886–1890. doi: 10.1080/14767058.2020.1773427
  33. GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG. 2003;110(1):27–32. doi: 10.1016/s1470-0328(02)02514-4
  34. Kapustin RV, Kopteeva EV, Alexeenkova EN, et al. Analysis of risk factors and perinatal mortality structure in pregnant patients with diabetes mellitus. Doctor.Ru. 2021;20(6):46–52. (In Russ.). doi: 10.31550/1727-2378-2021-20-6-46-52
  35. Morsing E, Brodszki J, Thuring A, et al. Infant outcome after active management of early-onset fetal growth restriction with absent or reversed umbilical artery blood flow. Ultrasound Obstet Gynecol. 2021;57(6):931–941. doi: 10.1002/uog.23101
  36. Vasak B, Koenen SV, Koster MP, et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol. 2015;45(2):162–167. doi: 10.1002/uog.14644
  37. King VJ, Bennet L, Stone PR, et al. Fetal growth restriction and stillbirth: biomarkers for identifying at risk fetuses. Front Physiol. 2022;13. doi: 10.3389/fphys.2022.959750
  38. Dall’Asta A, Brunelli V, Prefumo F, et al. Early onset fetal growth restriction. Matern Health Neonatol Perinatol. 2017;3. doi: 10.1186/s40748-016-0041-x
  39. Kinoshita M, Thuring A, Morsing E, et al. Extent of absent end-diastolic flow in umbilical artery and outcome of pregnancy. Ultrasound Obstet Gynecol. 2021;58(3):369–376. doi: 10.1002/uog.23541
  40. Lees CC, Stampalija T, Baschat A, et al. ISUOG practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. doi: 10.1002/uog.22134
  41. Gairabekova D, van Rosmalen J, Duvekot JJ. Outcome of early-onset fetal growth restriction with or without abnormal umbilical artery Doppler flow. Acta Obstet Gynecol Scand. 2021;100(8):1430–1438. doi: 10.1111/aogs.1414

Supplementary files

There are no supplementary files to display.

Copyright (c) 2023 Eсо-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies