The influence of reproductively significant autoantibodies determined in the follicular fluid on the quality of the obtained oocytes and embryos, as well as on the implantation rate in assisted reproductive technology cycles

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: According to reports, the efficiency of in vitro fertilization and intra cytoplasmic sperm injection protocols is decreased in patients positive for various autoantibodies, as opposed to autoantibody negative patients. However, there are contradictory data indicating no autoantibody effect on the outcome of infertility treatment using assisted reproductive technology.

AIM: The aim of this study was to evaluate the embryological outcome and clinical efficiency of infertility treatment in in vitro fertilization and intra cytoplasmic sperm injection protocols in women in the presence of reproductively significant autoantibodies.

MATERIALS AND METHODS: This prospective study enrolled 90 infertile patients undergoing assisted reproductive technology treatment. The follicular fluid obtained on the day of oocyte retrieval was evaluated for a wide autoantibody panel using commercial ELISA kits. The main group (n = 52) included women with autoantibody levels determined in the follicular fluid of more than three standard deviations from the mean values determined among all patients. The comparison group consisted of 38 women with autoantibody levels of less than three standard deviations from all subjects. The intergroup comparative analysis included clinical and anamnestic data, hormonal parameters, ovarian reserve, embryological data, and in vitro fertilization and intra cytoplasmic sperm injection efficiency.

RESULTS: Reliably lower ovarian reserve parameters (anti-Mullerian hormone levels 1.9 (1.4; 4.0) vs. 3.3 (2.2; 6.5) ng/ml; p = 0.005; number of antral follicles 8.5 (6.0; 12.0) vs. 11.0 (9.0; 17.0); p = 0.003) have been noted in the main group relatively to the comparison group. The autoantibodies to thyroid peroxidase and cardiolipin content in the follicular fluid has been shown to be negatively associated with the number of two-pronuclear zygotes, the presence of autoantibodies to aromatase correlating negatively with the fertilization rate. Furthermore, the follicular fluid levels of autoantibodies to thyroid peroxidase (≥105 IU/ml) and cardiolipin (≥5.1 IU/ml) are reliably associated with a higher frequency of a suboptimal response to previous controlled ovarian stimulation, a lower incidence of high quality embryos on days 3 and 4 of in vitro cultivation, a decreased number of top-quality blastocysts, and the clinical efficiency of in vitro fertilization and intra cytoplasmic sperm injection programs.

CONCLUSIONS: The presence of reproductively significant autoantibodies is an independent risk factor for reducing the total efficiency of assisted reproductive technology treatment.

Full Text

Restricted Access

About the authors

Galina Kh. Safarian

The Research Institute of Obstetrics, Gynecology and Reproductology named after D. O. Ott

Email: galasaf07@gmail.com
ORCID iD: 0000-0001-5988-323X
SPIN-code: 7096-3838
Scopus Author ID: 57215531925

MD

Russian Federation, Saint Petersburg

Lyailya Kh. Dzhemlikhanova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State University

Email: dzhemlikhanova_l@mail.ru
ORCID iD: 0000-0001-6842-4430
SPIN-code: 1691-6559
Scopus Author ID: 56896086100
ResearcherId: J-3441-2013

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; St. Petersburg State University

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
Scopus Author ID: 56895765600

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

Dariko A. Niauri

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; St. Petersburg State University

Email: d.niauri@mail.ru
ORCID iD: 0000-0003-1556-248X
SPIN-code: 4384-9785
Scopus Author ID: 12806465200
ResearcherId: G-8224-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089
ResearcherId: D-3880-2018

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Inna O. Krikheli

St. Petersburg State University

Email: ikrikhely@gmail.com
ORCID iD: 0000-0002-5439-1727
SPIN-code: 7356-6189
Scopus Author ID: 57200795744
ResearcherId: J-8653-2018

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Ksenia V. Ob’edkova

St. Petersburg State University

Email: obedkova_ks@mail.ru
ORCID iD: 0000-0002-2056-7907
SPIN-code: 2709-2890
Scopus Author ID: 57201161145
ResearcherId: A-7258-2019

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Elena A. Lesik

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lesike@yandex.ru
ORCID iD: 0000-0003-1611-6318
SPIN-code: 6102-4690

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Evgenia M. Komarova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821

, Cand. Sci. (Biol.)

Saint Petersburg

Alexander M. Gzgzyan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; St. Petersburg State University

Author for correspondence.
Email: agzgzyan@gmail.com
ORCID iD: 0000-0003-3917-9493
SPIN-code: 6412-4801
ResearcherId: G-7814-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Safarian GKh, Borodina ES, Nguyen KT., et al. Evaluation of assisted reproductive technologies outcomes in women with antithyroid autoantibodies. Problems and solutions. Russian Journal of Human Reproduction. 2021;27(6):107–114. (In Russ.). doi: 10.17116/repro202127061107
  2. Ying Y, Zhong YP, Zhou CQ, et al. Antinuclear antibodies predicts a poor IVF-ET outcome: Impaired egg and embryo development and reduced pregnancy rate. Immunoll Invest. 2012;41(5):458–468. doi: 10.3109/08820139.2012.660266
  3. Geva E, Yaron Y, Lessing JB, et al. Circulating autoimmune antibodies may be responsible for implantation failure in in vitro fertilization. Fertil Steril. 1994;62:802–806. doi: 10.1016/s0015-0282(16)57008-3
  4. Cline A, Kutteh W. Is there a role of autoimmunity in implantation failure after in-vitro fertilization? Curr Opin Obstet Gynecol. 2009;21:291–295. doi: 10.1097/gco.0b013e3283294879
  5. Sen A, Kushnir VA, Barad DH, et al. Endocrine autoimmune diseases and female infertility. Nat Rev Endocrinol. 2014;10(1):37–50. doi: 10.1038/nrendo.2013.212
  6. ESHRE ART Fact Sheet 2018 [cited 13 Feb 23]. Available from: https://www.eshre.eu/Press-Room/Resources
  7. Unuane D, Velkeniers B, Deridder S, et al. Impact of thyroid autoimmunity on cumulative delivery rates in in vitro fertilization/intracytoplasmic sperm injection patients. Fertil Steril. 2016;106:144–150. doi: 10.1016/j.fertnstert.2016.03.011
  8. Ombelet W, Cooke I, Dyer S, et al. Infertility and the provision of infertility medical services in developing countries. Hum Reprod Update. 2008;14(6):605–621. doi: 10.1093/humupd/dmn042
  9. Sharif K, Watad A, Bridgewood C, et al. Insights into the autoimmune aspect of premature ovarian insufficiency. Best Pract Res Clin Endocrinol Metab. 2019;16. doi: 10.1016/j.beem.2019.101323
  10. Kuharić M, Rozić D, Karner I. Thyroid autoimmunity and infertility. SEEMEDJ. 2017;1(2):1–10. doi: 10.26332/SEEMEDJ.V1I2.48
  11. Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Gene. 2012;29:1227–1239. doi: 10.1007/s10815-012-9861-4
  12. Poppe K, Autin C, Veltri F, et al. Thyroid autoimmunity and ICSI pregnancy outcomes. J. Clin Endocrinol Metab. 2018;103(5):1755–1766. doi: 10.1210/jc.2017-02633
  13. Sundblad V, Bussmann L, Chiauzzi VA, et al. Alpha-enolase: a novel autoantigen in patients with premature ovarian failure. Clin Endocrinol (Oxf). 2006;65(6):745–751. doi: 10.1111/j.1365-2265.2006.02661.x
  14. Vega M, Barad DH, Yu Y, et al. Anti-mullerian hormone levels decline with the presence of antiphospholipid antibodies. Am J Reprode Immunol. 2016;76(4):333–337. doi: 10.1111/aji.12551
  15. Luborsky JL, Yu Y, Edassery SL., et al. Autoantibodies to mesothelin in infertility. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1970–1978. doi: 10.1158/1055-9965.EPI-11-0139
  16. Edassery SL, Shatavi SV, Kunkel JP, et al. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil Steril. 2010;94(7):2636–2641. doi: 10.1016/j.fertnstert.2010.04.012
  17. Deroux A, Dumestre-Perard C, Dunand-Faure C, et al. Female infertility and serum auto-antibodies: a systematic review. Clin Rev Allergy Immunol. 2017;53:78–86. doi: 10.1007/s12016-016-8586-z
  18. Yu-Rice Y, Edassery S, Urban N, et al. Selenium-Binding Protein 1 (SBP1) autoantibodies in ovarian disorders and ovarian cancer. Reproduction. 2017;153(3):277–284. doi: 10.1530/REP-16-0265
  19. Weghofer A, Himaya E., Kushnir VA., et al. The impact of thyroid function and thyroid autoimmunity on embryo quality in women with low functional ovarian reserve: a case-control study. Reprod Biol Endocrinol. 2015;13(43):1–6. doi: 10.1186/s12958-015-0041-0
  20. Ye Y, Kuhn C, Kösters M, et al. Anti α-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages. EBioMedicine. 2019;41:610–622. doi: 10.1016/j.ebiom.2019.02.027
  21. Zou H, Yang ZZ, Zhang P, et al. Autoimmune disorders affect the in vitro fertilization outcome in infertile women. National journal of andrology. 2008;14(4):343–346.
  22. Geva E, Amit A, Lerner-Geva L, et al. Autoimmune disorders: another possible cause for in vitro fertilization and embryo transfer failure. Zhonghua Nan Ke Xue. 1995;10:2560–2563. (In Chinese).
  23. Inagaki J, Matsuura E, Nomizu M, et al. IgG anti-laminin-1 autoantibody and recurrent miscarriages. Am J Reprod Immunol. 2001;45(4):232–238. doi: 10.1111/j.8755-8920.2001.450406.x
  24. Pala A, Coghi I, Spampinato G., et al. Immunochemical and biological characteristics of a human autoantibody to human chorionic gonadotropin and luteinizing hormone. J Clin Endocrinol Metab. 1988;67(6):1317–1321. doi: 10.1111/j.8755-8920.2001.450406.x
  25. Cubillos J, Lucena A, Lucena C, et al. Incidence of autoantibodies in the infertile population. Early Pregnancy. 1997;3(2):119–124.
  26. Birkenfeld A, Mukaida T, Minichiello L, et al. Incidence of autoimmune antibodies in failed embryo transfer cycles. Am J Reprod Immunol. 1994;31(2–3):65–68. doi: 10.1111/j.1600-0897.1994.tb00848.x
  27. Zhong YP, Ying Y, Wu HT, et al. Relationship between antithyroid antibody and pregnancy outcome following in vitro fertilization and embryo transfer. Int J Med Sci. 2012;9:121–125. doi: 10.7150/ijms.3467
  28. Caccavo D, Pellegrino NM, Totaro I, et al. Anti-laminin-1 antibodies in sera and follicular fluid of women with endometriosis undergoing in vitro fertilization. Int J Immunopathol Pharmacol. 2011;24:481–488. doi: 10.1177/039463201102400221
  29. Monteleone P, Parrini D, Faviana P, et al. Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis. Am J Reprod Immunol. 2011;66(2):108–114. doi: 10.1111/j.1600-0897.2010.00961.x
  30. Matsubayashi H, Sugi T, Arai T, et al. IgG-antiphospholipid antibodies in follicular fluid of IVF-ET patients are related to low fertilization rate of their oocytes. Am J Reprod Immunol. 2006;55(5):341–348. doi: 10.1111/j.1600-0897.2006.00374.x
  31. Safarian GKh. Effectivnost’ program vspomogatel’nikh reproductivnikh technologii u zhenshin s besplodiem I nalichiem reproductivno znachimikh autoantitel [dissertation]. Saint Petersburg; 2022. (In Russ). [cited 2022 Dec 12] Available from: https://disser.spbu.ru/files/2022/disser_safarian.pdf
  32. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–1283. doi: 10.1093/humrep/der037
  33. Tao J, Tamis R, Fink K, et al. The neglected morula/compact stage embryo transfer. Hum Reprod. 2002;17(6):1513–1518. doi: 10.1093/humrep/17.6.1513
  34. Gardner DK, Sakkas D. Assessment of embryo viability: the ability to select a single embryo for transfer – a review. Placenta. 2003;24(B):5–12. doi: 10.1016/s0143-4004(03)00136-x
  35. Chen CW, Huang YL, Tzeng CR, et al. Idiopathic low ovarian reserve is associated with more frequent positive thyroid peroxidase antibodies. Thyroid. 2017;27(9):1194–1200. doi: 10.1089/thy.2017.0139
  36. Yamakami L, Serafini P, de Araujo D, et al. Ovarian reserve in women with primary antiphospholipid syndrome. Lupus. 2014;23(9):862–867. doi: 10.1177/0961203314529468
  37. Öztürk Ünsal I, Hepşen S, Akhanlı P, et al. Evaluation of serum anti-Müllerian hormone levels in women with Hashimoto thyroiditis in the reproductive age. Turk J Med Sci. 2021;51(2):716–721. doi: 10.3906/sag-2012-177
  38. Huang N, Liu D, Lian Y., et al. Immunological microenvironment alterations in follicles of patients with autoimmune thyroiditis. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.770852
  39. Antonelli A, Ferrari SM, Frascerra S, et al. Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 2011;96(6):1859–1863. doi: 10.1210/jc.2010-2905
  40. Sunkara SK, Rittenberg V, Raine-Fenning N, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26(7):1768–1774. doi: 10.1093/humrep/der106
  41. Makabe S, Naguro T, Stallone T. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc Res Tech. 2006;69:436–449. doi: 10.1002/jemt.20303
  42. Safarian G, Gzgzyan A, Dzhemlikhanova L, et al. IVF/ICSI efficiency in women with Hashimoto thyroiditis. Vestnik of Saint Petersburg University. Medicine. 2019;14(4):374–376. doi: 10.21638/spbu11.2019.431

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparative evaluation of serum anti-Mullerian hormone concentration in the study groups. * Mann–Whitney U-test used; group differences are significant at p < 0.05

Download (118KB)
3. Fig. 2. Comparative analysis of antral follicle count in the study groups. * Mann–Whitney U-test used; group differences are significant at p < 0.05

Download (117KB)
4. Fig. 3. Comparative analysis of suboptimal response frequency among patients investigated depending on the threshold serum and follicular fluid autoantibodies’ values estimated by logistic regression. АТ-ТРО — thyroid peroxidase autoantibodies; anti-CL — autoantibodies to cardiolipin; FF — follicular fluid. * Pearson’s χ2 test; ** Yates’ χ2 test; group differences are significant at p < 0.05

Download (132KB)
5. Fig. 4. Depend of the number of two-pronuclear zygotes on follicular fluid thyroid peroxidase autoantibodies values in women of both group

Download (192KB)
6. Fig. 5. Depend of the number of two-pronuclear zygotes on follicular fluid autoantibodies to cardiolipin values in women of both group

Download (193KB)
7. Fig. 6. Depend of fertilization efficiency in relation to follicular fluid anti-aromatase antibody values estimated by multivariate linear regression analysis

Download (93KB)
8. Fig. 7. Comparative analysis of high-quality embryos on the 3rd (a) and 4th (b) days of development in the setting of in vitro fertilization and intra cytoplasmic sperm injection depending on the threshold values of follicular fluid autoantibodies. АТ-ТРО — thyroid peroxidase autoantibodies; anti-CL — autoantibodies to cardiolipin; FF — follicular fluid. Fisher’s two-tailed exact test was used. * Two-tailed Fisher’s exact test was used; group differences are significant at p < 0,05

Download (173KB)

Copyright (c) 2023 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies