Evaluation of serotonin levels in full-term newborns of diabetic mothers

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The growth of neurological and mental diseases in the offspring of patients with pre- and gestational diabetes mellitus determines the need to study the regulatory function of the serotoninergic system of the brain in newborns. This plays a key role in its morphofunctional development in early ontogenesis, which is necessary for timely diagnosis of disorders and prevention of long-term consequences.

AIM: The aim of this study was to evaluate serotonin levels in full-term newborns with diabetic fetopathy from mothers with pre- and gestational diabetes mellitus.

MATERIALS AND METHODS: The main group consisted of 45 newborns with diabetic fetopathy, of whom 30 individuals were from mothers with type 1 diabetes mellitus and 15 ones from mothers with gestational diabetes mellitus. The control group comprised 20 healthy full-term newborns from healthy mothers without pregnancy complications. Serotonin concentrations were determined in platelet-rich plasma of blood from the umbilical cord vein, and in a platelet suspension prepared from venous blood taken on the first day of life, using high-performance liquid chromatography with electrochemical detection.

RESULTS: Platelet-rich plasma serotonin level in umbilical cord blood taken from newborns of the main group was more than two times lower compared to children of healthy mothers. This parameter in venous blood taken from mothers with type 1 diabetes (0.744 ± 0.117 µmol/l) corresponded to that in healthy patients, while in mothers with gestational diabetes mellitus, it was significantly lower and amounted to 0.331 ± 0.071 µmol/l (p < 0.05). Moreover, platelet-rich plasma serotonin level in all newborns correlated with that in their mothers (R = 0.505; p < 0.05). Serotonin levels in venous blood platelets of newborns of the main group was almost 2.5 times lower than in healthy ones.

CONCLUSIONS: The data obtained indicate the need to use platelet serotonin values as a biochemical marker of disorders of functional brain development in children with diabetic fetopathy.

Full Text

Restricted Access

About the authors

Nataliia A. Zvereva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: tata-83@bk.ru
ORCID iD: 0000-0002-1220-1147

MD

Russian Federation, Saint Petersburg

Yuliya P. Milyutina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Alexander V. Arutjunyan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: alexarutjunyan@gmail.com
ORCID iD: 0000-0002-0608-9427

Dr. Sci. (Biol.), Professor, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care. 2007;30(Suppl 2):S141–S146. doi: 10.2337/dc07-s206
  2. Damm P, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–1399. doi: 10.1007/s00125-016-3985-5
  3. Malaza N, Masete M, Adam S, et al. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes. Int J Environ Res Public Health. 2022;19(17):10846. doi: 10.3390/ijerph191710846
  4. Kharitonova LA, Papysheva OV, Kataysh GA, et al. The state of health of children born to mothers with diabetes mellitus. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2018;63(3):26–31. EDN: XRHVDF doi: 10.21508/1027-4065-2018-63-3-26-31
  5. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20. doi: 10.1159/000371628
  6. Krzeczkowski JE, Boylan K, Arbuckle TE, et al. Neurodevelopment in 3–4 year old children exposed to maternal hyperglycemia or adiposity in utero. Early Hum Dev. 2018;125:8–16. doi: 10.1016/j.earlhumdev.2018.08.005
  7. Perna R, Loughan AR, Le J, et al. Gestational diabetes: long-term central nervous system developmental and cognitive sequelae. Appl Neuropsychol Child. 2015;4(3):217–220. doi: 10.1080/21622965.2013.874951
  8. Papysheva OV, Morozov SG, Gribova IE, et al. Long-term neurological consequences in children born to mothers with gestational diabetes mellitus. Clinical Practice in Pediatrics. 2022;17(2):23–29. EDN: VCUECW doi: 10.20953/1817-7646-2022-2-23-29
  9. Shcherbitskaiaia AD, Milyutina YuP, Zalozniaia IV, et al. The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus. Neurochem J. 2017;11(4):296–302. doi: 10.1134/S1819712417040080
  10. Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatry. 2018;52(10):924–948. doi: 10.1177/0004867418796955
  11. Huang L, Yu X, Keim S, et al. Maternal prepregnancy obesity and child neurodevelopment in the Collaborative Perinatal Project. Int J Epidemiol. 2014;43(3):783–792. doi: 10.1093/ije/dyu030
  12. Jenkins TA, Nguyen JC, Polglaze KE, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):56. doi: 10.3390/nu8010056
  13. Sidorova IS, Nikitina NA, Unanyan AL, et al. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Gynecologist. 2022;22(1):35-44. doi: 10.17116/rosakush20222201135
  14. Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res. 2015;277:3–13. doi: 10.1016/j.bbr.2014.05.022
  15. Uzbekov MG, Murphy S, Rose SP. Ontogenesis of serotonin ‘receptors’ in different regions of rat brain. Brain Res. 1979;168(1):195–199. doi: 10.1016/0006-8993(79)90139-2
  16. Oreland L, Hallman J. Blood platelets as a peripheral marker for the central serotonin system. Nordisk Psykiatrisk. Tidsskrift. 1989;43(20 suppl):43–51. doi: 10.3109/08039488909100833
  17. Cheibak LN, Katkova EV. Serotonin and its derivatives in the umbilical cord blood serum of premature newborn infants. Russian Bulletin of perinatology and pediatrics. 2010;(4):27–30. EDN: MVVABJ
  18. Cherechik TS, Cheibak LN. ndicators of serotonin metabolism in umbilical cord blood serum of full-term newborns and adaptation after birth. Bulletin of Russian State Medical University. 2011;(2):148–151. (In Russ.)
  19. Anderson GM, Czarkowski K, Ravski N, et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr Res. 2004;56(3):418–422. doi: 10.1203/01.PDR.0000136278.23672.A0
  20. Amiel-Tison C. Neurological evaluation of the maturity of newborn infants. Arch Dis Child. 1968;43(227):89–93. doi: 10.1136/adc.43.227.89
  21. Zvereva NA, Milyutina YP, Arutjunyan AV, et al. Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation. Journal of Obstetrics and Women’s Diseases. 2022;71(6):5–14. EDN: UFWSWG doi: 10.17816/JOWD112611
  22. Khoshnevisan K, Baharifar H, Torabi F, et al. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem. 2021;413(6):1615–1627. doi: 10.1007/s00216-020-03122-5
  23. Vakov L. Prouchvaniia vŭrkhu bazalnoto krŭvno nivo na serotonina pri bolni ot zakharen diabet [Basal blood level of serotonin in diabetes mellitus patients]. Vutr Boles. 1984;23(1):79–84.
  24. Barradas MA, Gill DS, Fonseca VA, et al. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest. 1988;18(4):399–404. doi: 10.1111/j.1365-2362.1988.tb01030.x
  25. Hasegawa Y, Suehiro A, Higasa S, et al. Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thromb Res. 2002;107(6):319–323. doi: 10.1016/s0049-3848(02)00348-1
  26. Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19(2):207–215. doi: 10.1016/s1472-6483(10)60074-0
  27. Gall V, Kosec V, Vranes HS, et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population. Coll Antropol. 2011;35(3):715–718.
  28. Furs VV, Dorochenko EM. Some indicators of tryptophan metabolism during physiological pregnancy. Journal of the Grodno State Medical University. 2011;(4):36–38. EDN: PZEPVT (In Russ.)
  29. Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. doi: 10.1210/en.2017-03025
  30. Perić M, Bečeheli I, Čičin-Šain L, et al. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol. 2022;13. doi: 10.3389/fendo.2022.1061317
  31. Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22(15):7807. doi: 10.3390/ijms22157807
  32. Forstner D, Guettler J, Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int J Mol Sci. 2021;22(19). doi: 10.3390/ijms221910732
  33. Cai Y, Li X, Zhou H, Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci. 2022;16. doi: 10.3389/fncel.2022.899069
  34. Zhao W, Zhao L, Zhao W. Determination of plasma serotonins level in patients with pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi. 1999;34(7):406–408.
  35. Li Y, Hadden C, Singh P, et al. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci USA. 2014;111(52):E5697–E5705. doi: 10.1073/pnas.1416675112
  36. Song JY, Lee KE, Byeon EJ, et al. Maternal gestational diabetes influences DNA methylation in the serotonin system in the human placenta. Life. 2022;12(11):1869. doi: 10.3390/life12111869
  37. Blazevic S, Horvaticek M, Kesic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS One. 2017;12(6). doi: 10.1371/journal.pone.0179934
  38. Shrestha D, Ouidir M, Workalemahu T, et al. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes. 2020;44(6):1406–1416. doi: 10.1038/s41366-020-0546-2
  39. Horvatiček M, Perić M, Bečeheli I, et al. Maternal metabolic state and fetal sex and genotype modulate methylation of the serotonin receptor type 2A gene (HTR2A) in the human placenta. Biomedicines. 2022;10(2):467. doi: 10.3390/biomedicines10020467
  40. Paquette AG, Lesseur C, Armstrong DA, et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics. 2013;8(8):796–801. doi: 10.4161/epi.25358
  41. Xu P, Dong S, Wu L, et al. Maternal and placental DNA methylation changes associated with the pathogenesis of gestational diabetes mellitus. Nutrients. 2022;15(1):70. doi: 10.3390/nu15010070
  42. Evsyukova II. Molecular mechanisms of the functioning system mother-placenta-fetus in women with obesity and gestational diabetes mellitus. Molecular medicine. 2020;18(1):11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02
  43. Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804–808. doi: 10.1038/nm.2173
  44. Almaça J, Molina J, Menegaz D, et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 2016;17(12):3281–3291. doi: 10.1016/j.celrep.2016.11.072
  45. Leitner M, Fragner L, Danner S, et al. Combined metabolomic analysis of plasma and urine reveals ahba, tryptophan and serotonin metabolism as potential risk factors in gestational diabetes mellitus (GDM). Front Mol Biosci. 2017;4:84. doi: 10.3389/fmolb.2017.00084
  46. Goeden N, Velasquez J, Arnold KA, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci. 2016;36(22):6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016
  47. França DCH, França EL, Sobrevia L, et al. Integration of nutrigenomics, melatonin, serotonin and inflammatory cytokines in the pathophysiology of pregnancy-specific urinary incontinence in women with gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6). doi: 10.1016/j.bbadis.2023.166737
  48. Liu D, Gao Q, Wang Y, et al. Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta. 2022;126:224–232. doi: 10.1016/j.placenta.2022.07.014
  49. Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. doi: 10.1002/jnr.24603
  50. Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):41–57. doi: 10.1038/s41386-021-01137-9
  51. Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. doi: 10.1038/nature09972
  52. Hanswijk SI, Spoelder M, Shan L, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21(16):5850. doi: 10.3390/ijms21165850
  53. Suri D, Teixeira CM, Cagliostro MK, et al. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology. 2015;40(1):88–112. doi: 10.1038/npp.2014.231
  54. Huang X, Kuang S, Applegate TJ, et al. Prenatal serotonin fluctuation affects serotoninergic development and related neural circuits in chicken embryos. Neuroscience. 2021;473:66–80. doi: 10.1016/j.neuroscience.2021.08.011
  55. Domingues RR, Fricke HP, Sheftel CM, et al. Effect of low and high doses of two selective serotonin reuptake inhibitors on pregnancy outcomes and neonatal mortality. Toxics. 2022;10(1):11. doi: 10.3390/toxics10010011
  56. Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav. 2019;182:22–34. doi: 10.1016/j.pbb.2019.05.005
  57. Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86(2):157–164. doi: 10.1038/s41390-019-0405-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Platelet-rich plasma serotonin levels in newborns and mothers in the groups. DM1, type 1 diabetes mellitus; GDM, gestational diabetes mellitus. * p < 0.05; ** p < 0.001

Download (108KB)
3. Fig. 2. Platelet serotonin levels in newborns in the groups. DM1, type 1 diabetes mellitus; GDM, gestational diabetes mellitus. * p < 0.05

Download (78KB)

Copyright (c) 2024 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies